Optics and Precision Engineering, Volume. 31, Issue 2, 183(2023)
Research and development status of Mini/Micro LED mass transfer technology
[1] H S CHEN, H F WANG, C J CHOU et al. Visual comfort in autostereoscopic display. Journal of the Society for Information Display, 25, 320-330(2017).
[2] D G TREICHLER. Are you missing the boat in training aids?. Film and Audio-visual Communication, 1967 48, 14-16.
[3] [3] 3任伟苗. 基于感知觉的视障用户产品设计研究[D]. 青岛: 青岛理工大学, 2021.RENW M. Research on Product Design for Visually Impaired Users Based on Perception[D]. Qingdao: Qingdao Tehcnology University, 2021. (in Chinese)
[4] D D DESJARDINS, D G HOPPER. Military display market segment: helicopters, 5443, 88-106(2004).
[5] [5] 5张功涛, 孙海威, 桑建, 等. 拼接显示面板及拼接显示装置: CN111276058A[P]. 2020-06-12.YANGK M, CHENY K, ZHUY F, et al. Display panel and tiled display device: CN111276058A[P]. 2020-06-12.(in Chinese)
[6] L R D MURTHY, A MUKHOPADHYAY, V YELLHETI et al. Evaluating accuracy of eye gaze controlled interface in military aviation environment. MT, 1-12(2020).
[7] [7] 7张功涛, 桑建, 朱贺玲, 等. 一种调节显示面板视角的器件及其制备方法, 显示装置: CN109507819A[P]. 2019-03-22.ZHANGG T, SANGJ, ZHUH L, et al. Apparatus for adjusting viewing angle of display panel, preparation method of apparatus and display device: CN109507819A[P]. 2019-03-22.(in Chinese)
[8] Q LIANG, Y X SUN, L J WANG et al. A novel inertial-aided visible light positioning system using modulated LEDs and unmodulated lights as landmarks. IEEE Transactions on Automation Science and Engineering, 19, 3049-3067(2022).
[9] Y F WU, J S MA, P SU et al. Full-color realization of micro-LED displays. Nanomaterials (Basel, Switzerland), 10, 2482(2020).
[10] M OLIFIERCZUK, J ZIELIŃSKI. Liquid crystal displays with high brightness of visualization versus active displays, 6587, 253-261(2007).
[11] X J ZHOU, P F TIAN, C W SHER et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Progress in Quantum Electronics, 71, 100263(2020).
[12] A M BAGHER. OLED display technology. American Journal of Optics and Photonics, 2, 32(2014).
[13] H W LIU, D D YU, P J NIU et al. Lifetime prediction of a multi-chip high-power LED light source based on artificial neural networks. Results in Physics, 12, 361-367(2019).
[14] J BAI, P J NIU, S N CAO. Highly precise measurement of depth for μLED based on single camera. Measurement, 189, 110439(2022).
[15] [15] 15冯奇斌, 肖慧丽, 杨玲, 等. 用于超薄MiniLED背光模组的光学膜设计[J]. 光学 精密工程, 2021, 29(11): 2548-2555. doi: 10.37188/OPE.2021.0239FENGQ B, XIAOH L, YANGL, et al. Design of optical film for ultra-thin MiniLED backlight modules[J]. Opt. Precision Eng., 2021, 29(11): 2548-2555.(in Chinese). doi: 10.37188/OPE.2021.0239
[16] [16] 16周文超, 吴一辉, 郝鹏, 等. 二维亚波长金属光栅多波长透射滤光片[J]. 光学学报, 2013, 33(11): 33-38. doi: 10.3788/aos201333.1105001ZHOUW CH, WUY H, HAOP, et al. Transmission bandpass filters based on two-dimensional subwavelength metallic gratings[J]. Acta Optica Sinica, 2013, 33(11): 33-38.(in Chinese). doi: 10.3788/aos201333.1105001
[17] T Z WU, C W SHER, Y LIN et al. Mini-LED and micro-LED: promising candidates for the next generation display technology. Applied Sciences, 8, 1557(2018).
[18] [18] 18严子雯, 严群, 李典伦, 等. 高度集成的μLED显示技术研究进展[J]. 发光学报, 2020, 41(10): 1309-1317. doi: 10.37188/CJL.20200191YANZ W, YANQ, LID L, et al. Research progress of high integration density μLED display technology[J]. Chinese Journal of Luminescence, 2020, 41(10): 1309-1317.(in Chinese). doi: 10.37188/CJL.20200191
[19] P J NIU, S HAO, Z F LIU et al. Design and force analysis of the chip transfer platform for mass transfer, 143-145(2022).
[20] S N CAO, P J NIU, Q LIU et al. Design and analysis of the magnetic circuit and vibration of LMLP for mass transfer, 104-108(2022).
[21] X FENG, M A MEITL, A M BOWEN et al. Competing fracture in kinetically controlled transfer printing. Langmuir: the ACS Journal of Surfaces and Colloids, 23, 12555-12560(2007).
[22] M A MEITL, Z T ZHU, V KUMAR et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Materials, 5, 33-38(2006).
[23] C A BOWER, M A MEITL, S BONAFEDE et al. Heterogeneous integration of microscale compound semiconductor devices by micro-transfer-printing, 963-967(2015).
[24] D GOMEZ, K GHOSAL, T MOORE et al. Scalability and yield in elastomer stamp micro-transfer-printing, 1779-1785(2017).
[25] S KIM, J WU, A CARLSON et al. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proceedings of the National Academy of Sciences of the United States of America, 107, 17095-17100(2010).
[27] L PPEL. Method for transferring semiconductor structure.
[28] M H WU, Y H FANG, C H CHAO. Electric-programmable magnetic module and picking-up and placement process for electronic devices.
[29] [29] 29杨志军, 白有盾, 陈新, 等. 双摆臂式固晶机焊头机构及固晶机: CN103367183A[P]. 2013-10-23.YANGZH J, BAIY D,CHENX, et al. Double-swing-arm type Die bonder welding head mechanism: CN103367183A[P]. 2013-10-23.(in Chinese)
[30] [30] 30深圳市卓兴半导体科技有限公司. [EB/OL]. [2022-07-10]. https://www.asmade.cn/gujingji/11-17.html Shenzhen Zhuoxing Semic and Tech Co., . doi: 10.1145/1242572.1242830Ltd. [EB/OL]. [2022-07-10]. https://www.asmade.cn/gujingji/11-17.html.(in Chinese). doi: 10.1145/1242572.1242830
[31] [31] 31深圳新益昌科技股份有限公司. [EB/OL]. [2022-05-07]. http://www.szhech.com/pd.jsp?id=51.Shenzhen Xinyichang Technology Co.,ltd. . [EB/OL]. [2022-05-07]. http://www.szhech.com/pd.jsp?id=51.(in Chinese)
[32] [32] 32邓应铖, 曾逸. 一种针刺式固晶机: CN113539935A[P]. 2021-10-22.DENGY CH, ZENGY. Needling type Die bonder: CN113539935A[P]. 2021-10-22.(in Chinese)
[33] [33] 33东莞普莱信智能技术有限公司. [EB/OL]. [2022-07-10]. http://www.plxcn.com/pro_1131615.html.Plaxin Intelligent Technology Co., Ltd . [EB/OL]. [2022-07-10]. http://www.plxcn.com/pro_1131615.html.(in Chinese)
[34] [34] 34Rohinni与京东方开始量产Mini LED显示. [EB/OL]. [2022-05-07]. https://new.qq.com/rain/a/20210811A006B700.Rohinni and BOE start mass production of Mini LEDdisplays. [EB/OL]. [2022-05-07]. https://new.qq.com/rain/a/20210811A006B700.(in Chinese)
[35] A BIBL, J A HIGGINSON, H F S LAW et al. Method of transferring a micro device.
[36] A BIBL, J A HIGGINSON, H F STEPHEN LAW et al. Micro device transfer head heater assembly and method of transferring a micro device.
[37] H J J YEH, J S SMITH. Fluidic self-assembly for the integration of GaAs light-emitting diodes on Si substrates. IEEE Photonics Technology Letters, 6, 706-708(1994).
[38] A K VERMA, M A HADLEY, H J J YEH et al. Fluidic self-assembly of silicon microstructures, 1263-1268(2002).
[39] [39] 39邓永波, 张平, 杜新, 等. 亲/疏水性不同壁面组成微通道的深宽比与通道内液体的自发毛细流动[J]. 光学 精密工程, 2010, 18(7): 1562-1567.DENGY B, ZHANGP, DUX, et al. Aspect ratio for microchannels with nonuniform surface properties and spontaneous capillary[J]. Opt. Precision Eng., 2010, 18(7): 1562-1567.(in Chinese)
[40] U SRINIVASAN, D LIEPMANN, R T HOWE. Microstructure to substrate self-assembly using capillary forces. Journal of Microelectromechanical Systems, 10, 17-24(2001).
[41] J J LEE, P J SCHUELE. System and method for the fluidic assembly of emissive displays.
[42] [42] 42曹文贤. Micro LED巨量转移技术的研究进展[J]. 电视技术, 2021, 45(9): 107-114.CAOW X. Recent progress of micro LED mass transfer method[J]. Video Engineering, 2021, 45(9): 107-114.(in Chinese)
[43] S YANDO. Method and apparatus for fabricating an array of discrete elements.
[44] C FONSTAD. Magnetically-Assisted Statistical Assembly-a new heterogeneous integration technique(2002).
[45] Q RAMADAN, Y S UK, K VAIDYANATHAN. Large scale microcomponents assembly using an external magnetic array. Applied Physics Letters, 90, 172502(2007).
[46] M DURNIAK. Methods and systems for parallel assembly.
[47] S H AHN, L J GUO. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano, 3, 2304-2310(2009).
[48] B K SHARMA, B JANG, J E LEE et al. Load-controlled roll transfer of oxide transistors for stretchable electronics. Advanced Functional Materials, 23, 2024-2032(2013).
[49] M CHOI, B JANG, W LEE et al. Stretchable displays: stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing (adv. funct. mater. 11/2017). Advanced Functional Materials, 27(2017).
[50] X H YANG, Z H ZHOU, Z M WANG et al. High power, single-frequency, long pulse width 1064 nm laser source. Optics Communications, 510, 127959(2022).
[51] [51] 51孙宁宁, 杨彪, 陈福荣, 等. 激光辅助MicroLED巨量转移技术进展[J]. 中国科学: 技术科学, 2022, 52(4): 513-528.SUNN N, YANGB, CHENF R, et al. Advances in laser-assisted mass transfer of MicroLED[J]. Scientia Sinica (Technologica), 2022, 52(4): 513-528.(in Chinese)
[52] M K KELLY, O AMBACHER, R DIMITROV et al. Optical process for liftoff of group III-nitride films. Physica Status Solidi (a), 159, R3-R4(1997).
[53] J KIM, J H KIM, S H CHO et al. Selective lift-off of GaN light-emitting diode from a sapphire substrate using 266-nm diode-pumped solid-state laser irradiation. Applied Physics A, 122, 305(2016).
[54] [54] 54王仙翅, 潘章旭, 刘久澄, 等. 蓝光GaN基Micro-LED芯片制备及激光剥离工艺研究[J]. 半导体光电, 2020, 41(2): 211-216. doi: 10.16818/j.issn1001-5868.2020.02.013WANGX CH, PANZH X, LIUJ CH, et al. Preparation of blue light GaN-based micro-LED chips and study on laser lift-off process[J]. Semiconductor Optoelectronics, 2020, 41(2): 211-216.(in Chinese). doi: 10.16818/j.issn1001-5868.2020.02.013
[55] J PARK, Y G SIN, J H KIM et al. Dependence of adhesion strength between GaN LEDs and sapphire substrate on power density of UV laser irradiation. Applied Surface Science, 384, 353-359(2016).
[56] J BOHANDY, B F KIM, F J ADRIAN. Metal deposition from a supported metal film using an excimer laser. Journal of Applied Physics, 60, 1538-1539(1986).
[57] P DELAPORTE, A P ALLONCLE. INVITED]Laser-induced forward transfer: a high resolution additive manufacturing technology. Optics & Laser Technology, 78, 33-41(2016).
[58] V R MARINOV. 52-4: laser-enabled extremely-high rate technology for µLED assembly. SID Symposium Digest of Technical Papers, 49, 692-695(2018).
[60] A PARANJPE, J MONTGOMERY, S M LEE. 5: Invited paper: manufacturing solutions for micro-LED displays. SID Symposium Digest of Technical Papers, 50, 169-172(16).
[61] E H VIREY, N BARON. 45-1: status and prospects of microLED displays. SID Symposium Digest of Technical Papers, 49, 593-596(2018).
[62] [62] 62吴军. 大行程共基面二维工作台研制[D]. 武汉: 华中科技大学, 2013. doi: 10.7666/d.D410184WUJ. Development of Two-dimensional Coplanar Stage with Large Travel[D]. Wuhan: Huazhong University of Science and Technology, 2013. (in Chinese). doi: 10.7666/d.D410184
[63] K ERKORKMAZ, J M GORNIAK, D J GORDON. Precision machine tool X-Y stage utilizing a planar air bearing arrangement. CIRP Annals, 59, 425-428(2010).
[64] [64] 64董泽光. 精密气浮运动平台的建模、分析与控制[D]. 上海: 上海交通大学, 2014.DONGZ G. Modeling, Analysis and Control of a Gas-lubricated Precision Positioning Stage[D]. Shanghai: Shanghai Jiao Tong University, 2014. (in Chinese)
[65] S K RO, S KIM, Y KWAK et al. A linear air bearing stage with active magnetic preloads for ultraprecise straight motion. Precision Engineering, 34, 186-194(2010).
[66] E PELTA. Two-axis Sawyer motor for motion systems. IEEE Control Systems Magazine, 7, 20-24(1987).
[67] J Y YEN, Y L LEE, Y C LAI. A single deck 2D magnet levitation platform, 1-6(2007).
[68] B C HAN. Design and analysis of hybrid thrust magnetic bearing for magnetically suspended reaction wheel. Proc. of SPIE(2008).
[69] [69] 69刘强, 赵勇, 代峰燕, 等. 磁悬浮陀螺飞轮用隐式洛伦兹力磁轴承[J]. 光学 精密工程, 2018, 26(2): 399-409. doi: 10.3788/ope.20182602.0399LIUQ, ZHAOY, DAIF Y, et al. Novel internal Lorentz magnetic bearing for magnetic bearing gyrowheel[J]. Opt. Precision Eng., 2018, 26(2): 399-409.(in Chinese). doi: 10.3788/ope.20182602.0399
[70] Q LIU, Q R WANG, H LI et al. Improved design of Lorentz force-type magnetic bearings for magnetically suspended gimballing flywheels. Journal of Power Electronics, 21, 603-615(2021).
[71] S N CAO, P J NIU, J BAI et al. Design and analysis of a 6-DOF magnetic suspension platform with an improved permanent magnetic array. Sensors, 22, 4067(2022).
[72] W J KIM, D L TRUMPER. High-precision magnetic levitation stage for photolithography. Precision Engineering, 22, 66-77(1998).
[73] J M M ROVERS, J W JANSEN, J C COMPTER et al. Analysis method of the dynamic force and torque distribution in the magnet array of a commutated magnetically levitated planar actuator. IEEE Transactions on Industrial Electronics, 59, 2157-2166(2012).
[74] [74] 74刘强, 马宁, 李晶, 等. 一种LED显示屏检测修复用六自由度洛伦兹平台: CN114152197A[P]. 2022-03-08.LIUQ, MAN, LIJ, et al. Six-degree-of-freedom Lorentz platform for detecting and repairing LED display screen: CN114152197A[P]. 2022-03-08.(in Chinese)
[75] L JABBEN, P M OVERSCHIE. Lorentz motor with stationary magnets and coils applied in a 6-DOF contactless motion stage. Proceedings of ASPE Spring, 39-42(2001).
[76] [76] 76刘强, 房建成, 韩邦成. 磁悬浮飞轮锁紧保护技术研究与发展现状[J]. 光学 精密工程, 2014, 22(9): 2465-2475. doi: 10.3788/ope.20142209.2465LIUQ, FANGJ CH, HANB CH. Research and development status of locking protection technologies for magnetic bearing flywheels[J]. Opt. Precision Eng., 2014, 22(9): 2465-2475.(in Chinese). doi: 10.3788/ope.20142209.2465
[77] M WILLIAMS, P FAILL, P M BISCHOFF et al. Six degrees of freedom Mag-Lev stage development(1997).
[78] [78] 78鲁森, 杨开明, 朱煜, 等. 用于扫描干涉场曝光的超精密微动台设计与控制[J]. 光学学报, 2017, 37(10): 210-218. doi: 10.3788/aos201737.1012006LUS, YANGK M, ZHUY, et al. Design and control of ultra-precision fine positioning stage for scanning beam interference lithography[J]. Acta Optica Sinica, 2017, 37(10): 210-218.(in Chinese). doi: 10.3788/aos201737.1012006
[79] [79] 79刘强, 高晴利, 李晶, 等. 一种基于复合式支撑平台的激光剥离巨量转移设备: CN114743914A[P]. 2022-07-12. doi: 10.1016/j.cja.2022.06.005LIUQ, GAOQ L, LIJ, et al. Laser lift-off mass transfer equipment based on composite supporting platform: CN114743914A[P]. 2022-07-12.(in Chinese). doi: 10.1016/j.cja.2022.06.005
[80] J Y LI, B Q LUO, Z J LIU. Micro-LED mass transfer technologies, 1-3(2020).
[81] M MASTRANGELI, S ABBASI, C VAREL et al. Self-assembly from milli- to nanoscales: methods and applications. Journal of Micromechanics and Microengineering, 19(2009).
[82] [82] 82日)とうごう しんいち. 气体轴承: 设计、制作与应用[M]. 韩焕臣, 译. 北京: 宇航出版社, 1988.しんいちとうごう. Gas Bearing: Design, Manufacture and Application[M]. HAN H C, Trans. Beijing: Aerospace Publishing House, 1988. (in Chinese)
[83] [83] 83周建飞. 大行程气浮式精密位移平台系统设计[D]. 武汉: 华中科技大学, 2019.ZHOUJ F. Design of Large Stroke Gas-lubricated Precision Positioning Stage System[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese)
[84] X J REN, J J SUN, C X MIAO. Dynamics and stiffness analysis of a homopolar magnetic bearing. Progress in Electromagnetics Research M, 77, 29-40(2019).
[85] [85] 85刘强, 赵明师, 韩邦成, 等. 永磁偏置径向磁轴承能量优化与实验[J]. 光学 精密工程, 2019, 27(11): 2420-2428. doi: 10.3788/ope.20192711.2420LIUQ, ZHAOM SH, HANB CH, et al. Energy optimization and experimental for a permanent magnet-biased redial magnetic bearing[J]. Opt. Precision Eng., 2019, 27(11): 2420-2428.(in Chinese). doi: 10.3788/ope.20192711.2420
[86] [86] 86富采购新厂,为2-3年后Micro LED量产做准备. [EB/OL].[2022-07-08].https://www.ledinside.cn/news/20220304-51859.html. doi: 10.17504/protocols.io.3byl4b4jjvo5/v1Rich purchases new factory to prepare for Micro LED mass production in2-3 years. [EB/OL]. [2022-07-08]. https://www.ledinside.cn/news/20220304-51859.html.(in Chinese). doi: 10.17504/protocols.io.3byl4b4jjvo5/v1
[87] [87] 87安信证券股份有限公司. Micro LED 巨量转移技术持续进展,Mini LED 应用方兴未艾 [R]. 2021. doi: 10.36463/idw.2021.0816Essence securities Co., Ltd.. Micro LED mega-transfer technology continues to progress[R]. Mini LED applications are on the rise, 2021.(in Chinese). doi: 10.36463/idw.2021.0816
[88] [88] 88刘强, 徐杰, 俞建荣, 等. 液气双态Mini/Micro LED芯片巨量转移用晶膜及制作方法: CN114709163A[P]. 2022-07-05.LIUQ, XUJ, YUJ R, et al. Liquid-gas dual-state Mini/Micro LED chip mass transfer crystal film and manufacturing method thereof: CN114709163A[P]. 2022-07-05.(in Chinese)
[89] [89] 89刘强, 徐杰, 李晶, 等. 一种基于微孔介质气化原晶膜的巨量转移装置: CN114999988A[P]. 2022-09-02.LIUQ, XUJ, LIJ, et al. Mass transfer device based on microporous medium gasification primary crystal film: CN114999988A[P]. 2022-09-02.(in Chinese)
Get Citation
Copy Citation Text
Wei WANG, Tiantian ZHAO, Qiang LIU, Bangcheng HAN, Pingjuan NIU, Jian SANG. Research and development status of Mini/Micro LED mass transfer technology[J]. Optics and Precision Engineering, 2023, 31(2): 183
Category: Micro/Nano Technology and Fine Mechanics
Received: Jun. 7, 2022
Accepted: --
Published Online: Feb. 9, 2023
The Author Email: LIU Qiang (Liuqiangbuaa@163.com)