Opto-Electronic Engineering, Volume. 51, Issue 7, 240088(2024)

Perovskite quantum dot color conversion Micro-LEDs: progress in stability and patterning

Zijun Yan1,†... Zhong Liu1,†, Xiao Yang1, Shouqiang Lai1, Fengyu Yan2, Zongmin Lin1,3, Yue Lin1,5, Yijun Lv1,5, Haochung Kuo4, Zhong Chen1,5, and Tingzhu Wu15,* |Show fewer author(s)
Author Affiliations
  • 1School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian 361000, China
  • 2Fujian HeYi IOT Technology Co., Zhangzhou, Fujian 363000, China
  • 3Quanzhou Sanan Semiconductor Technology Co., Quanzhou, Fujian 362000, China
  • 4Department of Photonics and Graduate Institute of Electro-Optical Engineering, Yang Ming Chiao Tung University, Hsinchu, Taiwan 30010, China
  • 5Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian 361000, China
  • show less
    References(130)

    [1] J H Xiong, E L Hsiang, Z Q He et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl, 10, 216(2021).

    [2] K Yin, E L Hsiang, J Y Zou et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light Sci Appl, 11, 161(2022).

    [3] S X Jin, J Li, J Z Li et al. Gan microdisk light emitting diodes. Appl Phys Lett, 76, 631-633(2000).

    [4] T Z Wu, C W Sher, Y Lin et al. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl Sci, 8, 1557(2018).

    [5] T W Lu, Y Lin, T Q Zhang et al. Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications. Opto-Electron Adv, 7, 230210(2024).

    [6] W C Miao, F H Hsiao, Y J Sheng et al. Microdisplays: mini-LED, micro-OLED, and micro-LED. Adv Opt Mater, 12, 2300112(2024).

    [8] Y G Huang, G J Tan, F W Gou et al. Prospects and challenges of mini-LED and micro-LED displays. J Soc Inf Disp, 27, 387-401(2019).

    [9] S Q Lai, S B Liu, Z L Li et al. Applications of lasers: a promising route toward low-cost fabrication of high-efficiency full-color micro-LED displays. Opto-Electron Sci, 2, 230028(2023).

    [10] F Yang, Y Xu, L Li et al. Optical and microstructural characterization of micro-LED with sidewall treatment. J Phys D Appl Phys, 55, 435103(2022).

    [11] J Park, W Baek, D M Geum et al. Understanding the sidewall passivation effects in AlGaInP/GaInP micro-LED. Nanoscale Res Lett, 17, 29(2022).

    [12] S Y Karpov. Carrier localization in InGaN by composition fluctuations: implication to the "green gap". Photonics Res, 5, A7-A12(2017).

    [13] Z J Yan, S Y Liu, Y Sun et al. Atomic layer deposition technology for the development of high-quality, full-colour micro-LED displays. Next Nanotechnol, 5, 100051(2024).

    [14] T W Lu, X S Lin, W A Guo et al. High-speed visible light communication based on micro-LED: a technology with wide applications in next generation communication. Opto-Electron Sci, 1, 220020(2022).

    [15] T Y Lee, Y M Huang, H Chiang et al. Increase in the efficiency of III-nitride micro LEDs by atomic layer deposition. Opt Express, 30, 18552-18561(2022).

    [16] M S Wong, J A Kearns, C Lee et al. Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments. Opt Express, 28, 5787-5793(2020).

    [17] Y Z Zhao, J Q Liang, Q H Zeng et al. 2000 ppi silicon-based AlGaInP red micro-LED arrays fabricated via wafer bonding and epilayer lift-off. Opt Express, 29, 20217-20228(2021).

    [18] X Yang, Y Lin, T Z Wu et al. An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities. Opto-Electron Adv, 5, 210123(2022).

    [19] B Chaudhary, Y K Kshetri, H S Kim et al. Current status on synthesis, properties and applications of CsPbX3 (X = Cl, Br, I) perovskite quantum dots/nanocrystals. Nanotechnology, 32, 502007(2021).

    [20] Y Wu, X M Li, H B Zeng. Highly luminescent and stable halide perovskite nanocrystals. ACS Energy Lett, 4, 673-681(2019).

    [21] Z J Yan, F S Ye, L Y Xu et al. Optimum temperature of atomic layer deposition of alumina on CsPbBr3 quantum-dot for optical performance and environmental stability. J Lumin, 261, 119905(2023).

    [22] J H Shen, Y Wang, Y H Zhu et al. A polymer-coated template-confinement CsPbBr3 perovskite quantum dot composite. Nanoscale, 13, 6586-6591(2021).

    [23] S J Ho, H C Hsu, C W Yeh et al. Inkjet-printed salt-encapsulated quantum dot film for UV-based RGB color-converted micro-light emitting diode displays. ACS Appl Mater Interfaces, 12, 33346-33351(2020).

    [24] C H Bi, S V Kershaw, A L Rogach et al. Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol. Adv Funct Mater, 29, 1902446(2019).

    [25] D L Bai, J R Zhang, Z W Jin et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells. ACS Energy Lett, 3, 970-978(2018).

    [26] S C Hou, Y Z Guo, Y G Tang et al. Synthesis and stabilization of colloidal perovskite nanocrystals by multidentate polymer micelles. ACS Appl Mater Interfaces, 9, 18417-18422(2017).

    [27] N Yang, C Zhu, Y H Chen et al. An in situ cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation. Energy Environ Sci, 13, 4344-4352(2020).

    [28] T Ma, J Chen, Z Y Chen et al. Progress in color conversion technology for micro-LED. Adv Mater Technol, 8, 2200632(2023).

    [29] S Y Liang, Y F Liu, Z K Ji et al. High-resolution patterning of perovskite quantum dots via femtosecond laser-induced forward transfer. Nano Lett, 23, 3769-3774(2023).

    [30] L C Zhu, J Tao, P Y Li et al. Microfluidic static droplet generated quantum dot arrays as color conversion layers for full-color micro-LED displays. Nanoscale Adv, 5, 2743-2747(2023).

    [31] J Y Zhao, L X Chen, D Z Li et al. Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition. Nat Commun, 12, 4603(2021).

    [32] M G Ju, M Chen, Y Y Zhou et al. Toward eco-friendly and stable perovskite materials for photovoltaics. Joule, 2, 1231-1241(2018).

    [33] Y Y Zhou, Y X Zhao. Chemical stability and instability of inorganic halide perovskites. Energy Environ Sci, 12, 1495-1511(2019).

    [34] Y Wei, Z Y Cheng, J Lin. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem Soc Rev, 48, 310-350(2019).

    [35] G P Nagabhushana, R Shivaramaiah, A Navrotsky. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. Proc Natl Acad Sci USA, 113, 7717-7721(2016).

    [36] C Wu, Y T Zou, T Wu et al. Improved performance and stability of all-inorganic perovskite light-emitting diodes by antisolvent vapor treatment. Adv Funct Mater, 27, 1700338(2017).

    [37] J Guo, M Lu, X Y Zhang et al. Highly stable and efficient light-emitting diodes based on orthorhombic γ-CsPbI3 nanocrystals. ACS Nano, 17, 9290-9301(2023).

    [38] R J Sutton, M R Filip, A A Haghighirad et al. Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment. ACS Energy Lett, 3, 1787-1794(2018).

    [39] Y Lin, X T Fan, X Yang et al. Remarkable black-phase robustness of CsPbI3 nanocrystals sealed in solid SiO2/AlOx sub-micron particles. Small, 17, 2103510(2021).

    [40] F Ke, C X Wang, C J Jia et al. Preserving a robust CsPbI3 perovskite phase via pressure-directed octahedral tilt. Nat Commun, 12, 461(2021).

    [41] S Ma, S H Kim, B Jeong et al. Strain-mediated phase stabilization: a new strategy for ultrastable α-CsPbI3 perovskite by nanoconfined growth. Small, 15, 1900219(2019).

    [42] J A Steele, H D Jin, I Dovgaliuk et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science, 365, 679-684(2019).

    [43] T Moot, D R Dikova, A Hazarika et al. Beyond strain: controlling the surface chemistry of CsPbI3 nanocrystal films for improved stability against ambient reactive oxygen species. Chem Mater, 32, 7850-7860(2020).

    [44] M Hayyan, M A Hashim, I M AlNashef. Superoxide ion: generation and chemical implications. Chem Rev, 116, 3029-3085(2016).

    [45] J S Chen, D Z Liu, M J Al-Marri et al. Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application. Sci China-Mater, 59, 719-727(2016).

    [46] R Shwetharani, V Nayak, M S Jyothi et al. Review on recent advances of core-shell structured lead halide perovskites quantum dots. J Alloys Compd, 834, 155246(2020).

    [47] Y J Gao, D X Lin, P Y Liu et al. Interaction mechanism between water molecules and perovskites. Mater Chem Front, 8, 785-799(2024).

    [48] J J Calvin, A S Brewer, A P Alivisatos. The role of organic ligand shell structures in colloidal nanocrystal synthesis. Nat Synth, 1, 127-137(2022).

    [49] X H He, Y L Yin, G Tang et al. Role of trioctylphosphine in the synthesis of quantum dots: a modulator of nucleation, growth, and solubility. J Phys Chem C, 127, 5021-5028(2023).

    [50] M Liu, G Tang, Y Liu et al. Ligand exchange of quantum dots: a thermodynamic perspective. J Phys Chem Lett, 15, 1975-1984(2024).

    [51] J Pan, L N Quan, Y B Zhao et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater, 28, 8718-8725(2016).

    [52] Y H Huang, W L Luan, M K Liu et al. DDAB-assisted synthesis of iodine-rich CsPbI3 perovskite nanocrystals with improved stability in multiple environments. J Mater Chem C, 8, 2381-2387(2020).

    [53] S Cho, J Kim, S M Jeong et al. High-voltage and green-emitting perovskite quantum dot solar cells via solvent miscibility-induced solid-state ligand exchange. Chem Mater, 32, 8808-8818(2020).

    [54] Y M Li, M Deng, X Y Zhang et al. Proton-prompted ligand exchange to achieve high-efficiency CsPbI3 quantum dot light-emitting diodes. Nano-Micro Lett, 16, 105(2024).

    [55] P Tyagi, R Srivastava, L I Giri et al. Degradation of organic light emitting diode: heat related issues and solutions. Synth Met, 216, 40-50(2016).

    [56] Y K Wang, F L Yuan, Y T Dong et al. All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite. Angew Chem Int Ed, 60, 16164-16170(2021).

    [57] T Chiba, Y Hayashi, H Ebe et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics, 12, 681-687(2018).

    [58] F Krieg, S T Ochsenbein, S Yakunin et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: zwitterionic capping ligands for improved durability and stability. ACS Energy Lett, 3, 641-646(2018).

    [59] Z W Zeng, Y H Meng, Z X Yang et al. Efficient CsPbBr3 perovskite light-emitting diodes via novel multi-step ligand exchange strategy based on zwitterionic molecules. ACS Appl Mater Interfaces, 16, 10389-10397(2024).

    [60] N Ding, W Xu, D L Zhou et al. Extremely efficient quantum-cutting Cr3+, Ce3+, Yb3+ tridoped perovskite quantum dots for highly enhancing the ultraviolet response of silicon photodetectors with external quantum efficiency exceeding 70%. Nano Energy, 78, 105278(2020).

    [61] Y Gao, C Yan, X D Peng et al. The metal doping strategy in all inorganic lead halide perovskites: synthesis, physicochemical properties, and optoelectronic applications. Nanoscale, 13, 18010-18031(2021).

    [62] V M Goldschmidt. Die gesetze der krystallochemie. Naturwissenschaften, 14, 477-485(1926).

    [63] W A Dunlap-Shohl, Y Y Zhou, N P Padture et al. Synthetic approaches for halide perovskite thin films. Chem Rev, 119, 3193-3295(2019).

    [64] M G Ju, J Dai, L Ma et al. Lead-free mixed tin and germanium perovskites for photovoltaic application. J Am Chem Soc, 139, 8038-8043(2017).

    [65] W Travis, E N K Glover, H Bronstein et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem Sci, 7, 4548-4556(2016).

    [66] Z Yao, W G Zhao, S J Chen et al. Mn doping of CsPbI3 film towards high-efficiency solar cell. ACS Appl Energy Mater, 3, 5190-5197(2020).

    [67] M R Linaburg, E T McClure, J D Majher et al. Cs1–xRbxPbCl3 and Cs1–xRbxPbBr3 solid solutions: understanding octahedral tilting in lead halide perovskites. Chem Mater, 29, 3507-3514(2017).

    [68] H Wu, Y Yang, D C Zhou et al. Rb+ cations enable the change of luminescence properties in perovskite (RbxCs1−xPbBr3) quantum dots. Nanoscale, 10, 3429-3437(2018).

    [69] C H Bi, S X Wang, Q Li et al. Thermally stable copper(Ⅱ)-doped cesium lead halide perovskite quantum dots with strong blue emission. J Phys Chem Lett, 10, 943-952(2019).

    [70] N Mondal, A De, A Samanta. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals. ACS Energy Lett, 4, 32-39(2019).

    [71] Y Q Zhang, D T Tu, L P Wang et al. Transition metal ion-doped cesium lead halide perovskite nanocrystals: doping strategies and luminescence design. Mater Chem Front, 8, 192-209(2024).

    [72] A P Litvin, I V Margaryan, W X Yin et al. B-site doping of metal halide perovskite nanoplatelets influences their optical properties. Adv Opt Mater, 12, 2301001(2024).

    [73] A Dutta, N Pradhan. Phase-stable red-emitting CsPbI3 nanocrystals: successes and challenges. ACS Energy Lett, 4, 709-719(2019).

    [74] R K Behera, A Dutta, D Ghosh et al. Doping the smallest shannon radii transition metal ion Ni(Ⅱ) for stabilizing α-CsPbI3 perovskite nanocrystals. J Phys Chem Lett, 10, 7916-7921(2019).

    [75] M L Liu, N Z Jiang, H Huang et al. Ni2+-doped CsPbI3 perovskite nanocrystals with near-unity photoluminescence quantum yield and superior structure stability for red light-emitting devices. Chem Eng J, 413, 127547(2021).

    [76] J N Yang, Y Song, J S Yao et al. Potassium bromide surface passivation on CsPbI3-xBrx nanocrystals for efficient and stable pure red perovskite light-emitting diodes. J Am Chem Soc, 142, 2956-2967(2020).

    [77] X R Hao, H L Liu, W G Ding et al. Zn2+-doped lead-free CsMnCl3 nanocrystals enable efficient red emission with a high photoluminescence quantum yield. J Phys Chem Lett, 13, 4688-4694(2022).

    [78] Der Stam W Van, J J Geuchies, T Altantzis et al. Highly emissive divalent-ion-doped colloidal CsPb1–xMxBr3 perovskite nanocrystals through cation exchange. J Am Chem Soc, 139, 4087-4097(2017).

    [79] T Chiba, J Sato, S Ishikawa et al. Neodymium chloride-doped perovskite nanocrystals for efficient blue light-emitting devices. ACS Appl Mater Interfaces, 12, 53891-53898(2020).

    [80] H H Zhang, X Wang, Q Liao et al. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging. Adv Funct Mater, 27, 1604382(2017).

    [81] P T Liang, P Zhang, A Z Pan et al. Unusual stability and temperature-dependent properties of highly emissive CsPbBr3 perovskite nanocrystals obtained from in situ crystallization in poly(vinylidene difluoride). ACS Appl Mater Interfaces, 11, 22786-22793(2019).

    [82] L Yang, B W Fu, X Li et al. Poly(vinylidene fluoride)-passivated CsPbBr3 perovskite quantum dots with near-unity photoluminescence quantum yield and superior stability. J Mater Chem C, 9, 1983-1991(2021).

    [83] H R Dong, H Y Zhao, T T Xuan et al. Constructing perovskite/polymer core/shell nanocrystals with simultaneous high efficiency and stability for mini-LED backlights. ACS Appl Mater Interfaces, 15, 29297-29307(2023).

    [84] G J Xiao, Y N Wang, D Han et al. Pressure-induced large emission enhancements of cadmium selenide nanocrystals. J Am Chem Soc, 140, 13970-13975(2018).

    [85] Q C Zhou, Z L Bai, W G Lu et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv Mater, 28, 9163-9168(2016).

    [86] Y N Wang, J He, H Chen et al. Ultrastable, highly luminescent organic–inorganic perovskite–polymer composite films. Adv Mater, 28, 10710-10717(2016).

    [87] X Yang, C Valenzuela, X Zhang et al. Robust integration of polymerizable perovskite quantum dots with responsive polymers enables 4D-printed self-deployable information display. Matter, 6, 1278-1294(2023).

    [88] C K Trinh, Z Ahmad. SiO2-coated lead halide perovskites core-shell and their applications: a mini-review. R Soc Open Sci, 11, 230892(2024).

    [89] Y F Yang, Y J Zhang, R Li et al. Low-temperature atomic layer deposition of double-layer water vapor barrier for high humidity stable perovskite solar cells. Adv Opt Mater, 11, 2300148(2023).

    [90] M D He, Q G Zhang, F Carulli et al. Ultra-stable, solution-processable CsPbBr3-SiO2 nanospheres for highly efficient color conversion in micro light-emitting diodes. ACS Energy Lett, 8, 151-158(2023).

    [91] B Z Zhou, M J Liu, Y W Wen et al. Atomic layer deposition for quantum dots based devices. Opto-Electron Adv, 3, 190043(2020).

    [92] Y Jing, K Cao, B Z Zhou et al. Two-step hybrid passivation strategy for ultrastable photoluminescence perovskite nanocrystals. Chem Mater, 32, 10653-10662(2020).

    [93] F Fang, M J Liu, W Chen et al. Atomic layer deposition assisted encapsulation of quantum dot luminescent microspheres toward display applications. Adv Opt Mater, 8, 1902118(2020).

    [94] D Valdesueiro, M K Prabhu, C Guerra-Nunez et al. Deposition mechanism of aluminum oxide on quantum dot films at atmospheric pressure and room temperature. J Phys Chem C, 120, 4266-4275(2016).

    [95] Q Y Xiang, B Z Zhou, K Cao et al. Bottom up stabilization of CsPbBr3 quantum dots-silica sphere with selective surface passivation via atomic layer deposition. Chem Mater, 30, 8486-8494(2018).

    [96] R Bose, Y Z Zheng, T L Guo et al. Interface matters: enhanced photoluminescence and long-term stability of zero-dimensional cesium lead bromide nanocrystals via gas-phase aluminum oxide encapsulation. ACS Appl Mater Interfaces, 12, 35598-35605(2020).

    [97] M Wang, Z Y Lei, C Du et al. Stabilization of CsPbBr3 nanocrystals via defect passivation and alumina encapsulation for high-power light-emitting diodes. ACS Appl Nano Mater, 6, 6480-6487(2023).

    [98] H Y Dong, C H Zhang, W J Nie et al. Interfacial chemistry triggers ultrafast radiative recombination in metal halide perovskites. Angew Chem Int Ed, 61, e202115875(2022).

    [99] V K Ravi, S Saikia, S Yadav et al. CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability. ACS Energy Lett, 5, 1794-1796(2020).

    [100] X M Chen, F Zhang, Y Ge et al. Centimeter-sized Cs4PbBr6 crystals with embedded CsPbBr3 nanocrystals showing superior photoluminescence: nonstoichiometry induced transformation and light-emitting applications. Adv Funct Mater, 28, 1706567(2018).

    [101] S K Dutta, S Bera, N Pradhan. Why is making epitaxially grown all inorganic perovskite–chalcogenide nanocrystal heterostructures challenging? Some facts and some strategies. Chem Mater, 33, 3868-3877(2021).

    [102] S Bera, N Pradhan. Perovskite nanocrystal heterostructures: synthesis, optical properties, and applications. ACS Energy Lett, 5, 2858-2872(2020).

    [103] J D Shi, W Y Ge, J F Zhu et al. Core–shell CsPbBr3@CdS quantum dots with enhanced stability and photoluminescence quantum yields for optoelectronic devices. ACS Appl Nano Mater, 3, 7563-7571(2020).

    [104] L Z Wu, H C Hu, Y Xu et al. From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism. Nano Lett, 17, 5799-5804(2017).

    [105] X R Wang, Z W Ding, X Z Huang et al. Cross-linking strategies for efficient and highly stable perovskite solar cells. J Mater Chem C, 12, 351-387(2024).

    [106] X Yin, Z Y Wang, Y J Zhao et al. Cross-linking polymerization boosts the performance of perovskite solar cells: from material design to performance regulation. Energy Environ Sci, 16, 4251-4279(2023).

    [107] Y Liu, W S Sun, J Xiao et al. Cross-linked polymer modified layered double hydroxide nanosheet stabilized CsPbBr3 perovskite quantum dots for white light-emitting diode. Appl Clay Sci, 229, 106662(2022).

    [108] P Xiong, Y Q Gong, X L Yang et al. Effect of hydrophobic silica aerogels in-situ on encapsulation the stability of CsPbBr3 quantum dots for white light-emitting diodes. J Alloys Compd, 938, 168541(2023).

    [109] Y C Hsu, Y H You, A N Au-Duong et al. Fabrication of intrinsic, elastic, self-healing, and luminescent CsPbBr3 quantum dot-polymer composites via thiol–ene cross-linking. ACS Appl Polym Mater, 4, 8987-8995(2022).

    [110] S Q Sun, P Jia, M Lu et al. Enhanced flexibility and stability of emissive layer enable high-performance flexible light-emitting diodes by cross-linking of biomass material. Adv Funct Mater, 32, 2204286(2022).

    [111] S Y Park, S Lee, J Yang et al. Patterning quantum dots via photolithography: a review. Adv Mater, 35, 2300546(2023).

    [112] J Lee, H Jo, M Choi et al. Recent progress on quantum dot patterning technologies for commercialization of QD-LEDs: current status, future prospects, and exploratory approaches. Small Methods, 8, 2301224(2024).

    [113] J Harwell, J Burch, A Fikouras et al. Patterning multicolor hybrid perovskite films via top-down lithography. ACS Nano, 13, 3823-3829(2019).

    [114] S Jeon, S Y Lee, S K Kim et al. All-solution processed multicolor patterning technique of perovskite nanocrystal for color pixel array and flexible optoelectronic devices. Adv Opt Mater, 8, 2000501(2020).

    [115] P P Zhang, G L Yang, F Li et al. Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes. Nat Commun, 13, 6713(2022).

    [116] S H Noh, W Jeong, K H Lee et al. Photocrosslinkable zwitterionic ligands for perovskite nanocrystals: self-assembly and high-resolution direct patterning. Adv Funct Mater, 33, 2304004(2023).

    [117] C H Lin, Q J Zeng, E Lafalce et al. Large-area lasing and multicolor perovskite quantum dot patterns. Adv Opt Mater, 6, 1800474(2018).

    [118] W S Guo, J Chen, T Ma et al. Direct photolithography patterning of quantum dot-polymer. Adv Funct Mater, 34, 2310338(2024).

    [119] S Maeng, S J Park, J Lee et al. Direct photocatalytic patterning of colloidal emissive nanomaterials. Sci Adv, 9, eadi6950(2023).

    [120] W C Sun, F Li, J Tao et al. Micropore filling fabrication of high resolution patterned PQDs with a pixel size less than 5 μm. Nanoscale, 14, 5994-5998(2022).

    [121] T T Xuan, S C Shi, L Wang et al. Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays. J Phys Chem Lett, 11, 5184-5191(2020).

    [122] N J Wilkinson, M A A Smith, R W Kay et al. A review of aerosol jet printing–a non-traditional hybrid process for micro-manufacturing. Int J Adv Manuf Technol, 105, 4599-4619(2019).

    [123] C Oakley, P Chahal. Aerosol jet printed quasi-optical terahertz components. IEEE Trans Terahertz Sci Technol, 8, 765-772(2018).

    [124] G Chen, Y Gu, H Tsang et al. The effect of droplet sizes on overspray in aerosol-jet printing. Adv Eng Mater, 20, 1701084(2018).

    [125] S Kim, S Kang, S Baek et al. Highly thin film with aerosol-deposited perovskite quantum dot/metal oxide composite for perfect color conversion and luminance enhancement. Chem Eng J, 441, 135991(2022).

    [126] G Kang, H Lee, J Moon et al. Electrohydrodynamic jet-printed MAPbBr3 perovskite/polyacrylonitrile nanostructures for water-stable, flexible, and transparent displays. ACS Appl Nano Mater, 5, 6726-6735(2022).

    [127] X Yang, S L Wang, Y Q Hou et al. Dual-ligand red perovskite ink for electrohydrodynamic printing color conversion arrays over 2540 dpi in near-eye micro-LED display. Nano Lett, 24, 3661-3669(2024).

    [128] M M Laurila. Super inkjet printed redistribution layer for a mems device, 73(2015).

    [129] X Yang, Z J Yan, C M Zhong et al. Electrohydrodynamically printed high-resolution arrays based on stabilized CsPbBr3 quantum dot inks. Adv Opt Mater, 11, 2202673(2023).

    [130] S W H Chen, C C Shen, T Z Wu et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photonics Res, 7, 416-422(2019).

    [131] Q L Wang, G N Zhang, H Y Zhang et al. High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink. Adv Funct Mater, 31, 2100857(2021).

    Tools

    Get Citation

    Copy Citation Text

    Zijun Yan, Zhong Liu, Xiao Yang, Shouqiang Lai, Fengyu Yan, Zongmin Lin, Yue Lin, Yijun Lv, Haochung Kuo, Zhong Chen, Tingzhu Wu. Perovskite quantum dot color conversion Micro-LEDs: progress in stability and patterning[J]. Opto-Electronic Engineering, 2024, 51(7): 240088

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 12, 2024

    Accepted: Jul. 8, 2024

    Published Online: Nov. 12, 2024

    The Author Email: Wu Tingzhu (吴挺竹)

    DOI:10.12086/oee.2024.240088

    Topics