Optics and Precision Engineering, Volume. 29, Issue 12, 2818(2021)
Research progress of microcapacitors: from preparation technology to development trend
[1] J L XU, Y H LIU, X GAO et al. Toward wearable electronics: a lightweight all-solid- state supercapacitor with outstanding transparency, foldability and breathability. Energy Storage Materials, 22, 402-409(2019).
[2] H Z LIU, G H ZHANG, X ZHENG et al. Emerging miniaturized energy storage devices for microsystem applications: from design to integration. International Journal of Extreme Manufacturing, 2(2020).
[3] H QU. CMOS MEMS fabrication technologies and devices. Micromachines, 7, 14(2016).
[4] S HIROSE, T USUI, S CROSSLEY et al. Progress on electrocaloric multilayer ceramic capacitor development. APL Materials, 4(2016).
[5] [5] 5汤勇, 刘辉龙, 陆龙生, 等. 激光加工平面型微超级电容器的研究进展与发展趋势[J]. 机械工程学报, 2019, 55(4): 189-206. doi: 10.3901/JME.2019.04.189TANGY, LIUH L, LUL SH, et al. Research progress and perspective trend of Laser-machined In-plane Micro-supercapacitors[J]. Journal of Mechanical Engineering, 2019, 55(4): 189-206.(in Chinese). doi: 10.3901/JME.2019.04.189
[6] H B ZHANG, M A MARWAT, B XIE et al. Polymer matrix nanocomposites with 1D ceramic nanofillers for energy storage capacitor applications. ACS Applied Materials & Interfaces, 12, 1-37(2020).
[7] A M R AMARAL, A J M CARDOSO. A simple offline technique for evaluating the condition of aluminum-electrolytic-capacitors. IEEE Transactions on Industrial Electronics, 56, 3230-3237(2009).
[8] H KISHI, Y MIZUNO, H CHAZONO. Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Japanese Journal of Applied Physics, 42, 1-15(2003).
[9] N VALENTINE, M H AZARIAN, M PECHT. Metallized film capacitors used for EMI filtering: a reliability review. Microelectronics Reliability, 92, 123-135(2019).
[10] T AKAHOSHI, D MIZUTANI, K FUKUI et al. Improved structure for package substrates with embedded thin-film capacitor. In 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), 1294-1299(2019).
[11] R XU, Y FENG, X WEI et al. Analysis on nonlinearity of antiferroelectric multilayer ceramic capacitor (MLCC) for energy storage. IEEE Transactions on Dielectrics and Electrical Insulation, 26, 2005-2011(2019).
[12] W X JIA, Y D HOU, M P ZHENG et al. Advances in lead-free high-temperature dielectric materials for ceramic capacitor application. IET Nanodielectrics, 1, 3-16(2018).
[13] X LIU, Y LI, N SUN et al. High energy-storage performance of PLZS antiferroelectric multilayer ceramic capacitors. Inorganic Chemistry Frontiers, 7, 756-764(2020).
[14] E HOURDAKIS, A G NASSIOPOULOU. Microcapacitors for energy storage: general characteristics and overview of recent progress. Physica Status Solidi (a), 217, 1900950(2020).
[15] L WEI, Q X LIU, B ZHU et al. Low-cost and high-productivity three-dimensional nanocapacitors based on stand-up ZnO nanowires for energy storage. Nanoscale Research Letters, 11, 1-9(2016).
[16] Y GUERFI, G LARRIEU. Vertical silicon nanowire field effect transistors with nanoscale gate-all-around. Nanoscale Research Letters, 11, 1-7(2016).
[17] C JOREL, C VALLÉE, P GONON et al. High performance metal-insulator-metal capacitor using a SrTiO3/ZrO2 bilayer. Applied Physics Letters, 94, 253502(2009).
[18] S W CHANG, J OH, S T BOLES et al. Fabrication of silicon nanopillar-based nanocapacitor arrays. Applied Physics Letters, 96, 153108(2010).
[19] P BANERJEE, I PEREZ, L HENN-LECORDIER et al. Nanotubular metal-insulator-metal capacitor arrays for energy storage. Nature Nanotechnology, 4, 292-296(2009).
[20] P BANERJEE, I PEREZ, L L HENN et al. ALD based Metal-insulator-metal (MIM) nanocapacitors for energy storage. ECS Transactions, 25, 345-353(2019).
[21] M BURKE, A BLAKE, V DJARA et al. High aspect ratio iridescent three-dimensional metal-insulator-metal capacitors using atomic layer deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 33(2015).
[22] L C HASPERT, S B LEE, G W RUBLOFF. Nanoengineering strategies for metal-insulator- metal electrostatic nanocapacitors. ACS Nano, 6, 3528-3536(2012).
[23] L STRAMBINI, A PAGHI, S MARIANI et al. Three-dimensional silicon-integrated capacitor with unprecedented areal capacitance for on-chip energy storage. Nano Energy, 68, 104281(2020).
[24] Y LIN, C S TAN. Physical and electrical characterization of 3D embedded capacitor: a high-density MIM capacitor embedded in TSV, 1956-1961(2017).
[25] J W LI, S L MA, H LIU et al. Design, fabrication and characterization of TSV interposer integrated 3D capacitor for SIP applications, 1970-1980(2018).
[26] B HSIA, M S KIM, M VINCENT et al. Photoresist-derived porous carbon for on-chip micro-supercapacitors. Carbon, 57, 395-400(2013).
[27] M F EL-KADY, R B KANER. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nature Communications, 4, 1475(2013).
[28] N KURRA, N A ALHEBSHI, H N ALSHAREEF. Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density. Advanced Energy Materials, 5, 1401303(2015).
[29] A D SMITH, Q LI, A ANDERSON et al. Toward CMOS compatible wafer-scale fabrication of carbon-based microsupercapacitors for IoT. Journal of Physics: Conference Series, 1052(2018).
[30] F LIU, A GUTES, I LABORIANTE et al. Graphitization of n-type polycrystalline silicon carbide for on-chip supercapacitor application. Applied Physics Letters, 99, 112104(2011).
[31] Y Q JIANG, Q ZHOU, L LIN. Planar MEMS supercapacitor using carbon nanotube forests, 587-590(2009).
[32] D S GARDNER, C W HOLZWARTH, Y LIU et al. Integrated on-chip energy storage using passivated nanoporous-silicon electrochemical capacitors. Nano Energy, 25, 68-79(2016).
[33] N A KYEREMATENG, T BROUSSE, D PECH. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nature Nanotechnology, 12, 7-15(2017).
[34] X Y ZHANG, W ZHAO, L WEI et al. In-plane flexible solid-state microsupercapacitors for on-chip electronics. Energy, 170, 338-348(2019).
[35] C KIM, D Y KANG, J H MOON. Full lithographic fabrication of boron-doped 3D porous carbon patterns for high volumetric energy density microsupercapacitors. Nano Energy, 53, 182-188(2018).
[36] F HAN, G MENG, F ZHOU et al. Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage. Science Advances, 1, 500-605(2015).
[37] H WU, G H YU, L J PAN et al. Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nature Communications, 4, 1943(2013).
[38] Z S WU, K PARVEZ, X L FENG et al. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nature Communications, 4, 2487(2013).
[39] B SONG, L Y LI, Z Y LIN et al. Water-dispersible graphene/polyaniline composites for flexible micro-supercapacitors with high energy densities. Nano Energy, 16, 470-478(2015).
[40] Z S WU, K PARVEZ, S LI et al. Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro- supercapacitors. Advanced Materials, 27, 4054-4061(2015).
[41] Y ZHANG, Y ZHAO, S S CAO et al. Design and synthesis of hierarchical SiO2@C/TiO2 hollow spheres for high-performance supercapacitors. ACS Applied Materials & Interfaces, 9, 29982-29991(2017).
[42] S K KIM, A LEE et al. Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors. Advanced Materials, 26, 5108-5112(2014).
[43] [43] 43兰红波, 郭良乐, 许权, 等. 大面积纳米压印光刻晶圆级复合软模具制造[J]. 光学 精密工程, 2018, 26(4): 894-905. doi: 10.3788/OPE.20182604.0894LANH B, GUOL L, XUQ, et al. Wafer-level composite mold for large-area nanoimprint lithography[J]. Opt. Precision Eng., 2018, 26(4): 894-905.(in Chinese). doi: 10.3788/OPE.20182604.0894
[44] [44] 44骆公序, 荆超, 汪于涛, 等. 紫外皮秒激光刻蚀体硅工艺研究[J]. 应用激光, 2019, 39(6): 1002-1005.LUOG X, JINGCH, WANGY T, et al. UV picosecond laser direct etching on bulk silicon[J]. Applied Laser, 2019, 39(6): 1002-1005.(in Chinese)
[45] Z Y WANG. Microsystems using three-dimensional integration and TSV technologies: Fundamentals and applications. Microelectronic Engineering, 210, 35-64(2019).
[46] [46] 46姜玉婷, 张毅, 胡跃强, 等. 增强现实近眼显示设备中光波导元件的研究进展[J]. 光学 精密工程, 2021, 29(1): 28-44. doi: 10.37188/OPE.20212901.0028JIANGY T, ZHANGY, HUY Q, et al. Development of optical waveguide elements in augmented reality near-eye displays[J]. Opt. Precision Eng., 2021, 29(1): 28-44.(in Chinese). doi: 10.37188/OPE.20212901.0028
[47] [47] 47王惠娟, 万里兮, 吕垚, 等. 高密度低寄生电感硅基半导体电容器的设计及验证[J]. 电子元件与材料, 2010, 29(3): 68-72. doi: 10.3969/j.issn.1001-2028.2010.03.019WANGH J, WANL X, LÜY, et al. Design and validation of high density and low parasitic inductance semiconductor silicon-based capacitor[J]. Electronic Components and Materials, 2010, 29(3): 68-72.(in Chinese). doi: 10.3969/j.issn.1001-2028.2010.03.019
[48] Z S WU, Y Z TAN, S H ZHENG et al. Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors. Journal of the American Chemical Society, 139, 4506-4512(2017).
[49] S H ZHENG, Z L LI, Z S WU et al. High packing density unidirectional arrays of vertically aligned graphene with enhanced areal capacitance for high-power micro- supercapacitors. ACS Nano, 11, 4009-4016(2017).
[50] [50] 50王晓峰, 陈学坤, 尹亚江, 等. 硅基MEMS三维微电极阵列的超电容特性[J]. 纳米技术与精密工程, 2013, 11(1): 68-73.WANGX F, CHENX K, YINY J, et al. Supercapacitor performance of MEMS three-dimensional silica-based microelectrode arrays[J]. Nanotechnology and Precision Engineering, 2013, 11(1): 68-73.(in Chinese)
[51] [51] 51文春明, 温志渝, 尤政, 等. 硅基微型超级电容器三维微电极结构制备[J]. 电子元件与材料, 2012, 31 (5): 42-45, 59. doi: 10.3969/j.issn.1001-2028.2012.05.012WENCH M, WENZH Y, YOUZH, et al. Preparation of three-dimensional silicon micro-electrode structure for micro-supercapacitor[J]. Electronic Components and Materials, 2012, 31(5): 42-45, 59.(in Chinese). doi: 10.3969/j.issn.1001-2028.2012.05.012
[52] L MENG, X HE, J GAO et al. A novel nanofabrication technique of silicon-based nanostructures. Nanoscale Research Letters, 11, 504(2016).
[53] W SUN, R L ZHENG, X Y CHEN. Symmetric redox supercapacitor based on micro-fabrication with three-dimensional polypyrrole electrodes. Journal of Power Sources, 195, 7120-7125(2010).
[54] J U BHANU, A AMUTHA, G R BABU et al. Crystalline phase dependent electrical properties of Mg incorporated tetragonal phase stabilized ZrO2 high-k dielectric layer in Si based MOS capacitors. Materials Science in Semiconductor Processing, 81, 7-16(2018).
[55] [55] 55陈杰, 李俊, 赵金茹, 等. ALD氧化铝薄膜介电性能及其在硅电容器的应用[J]. 电子与封装, 2013, 13(9): 31-34. doi: 10.3969/j.issn.1681-1070.2013.09.008CHENJ, LIJ, ZHAOJ R, et al. Dielectric property of ALD Al2O3 film and its application in silicon capacitor[J]. Electronics & Packaging, 2013, 13(9): 31-34. (in Chinese). doi: 10.3969/j.issn.1681-1070.2013.09.008
[56] [56] 56吕雁慧, 郭丽芳, 李刚, 等. 阳极氧化制备硅基氧化铝薄膜MIM电容器[J]. 微纳电子技术, 2019, 56(6): 493-498, 504.LÜY H, GUOL F, LIG, et al. Preparation of silicon-based Al2O3 thin film MIM capacitors by anodic oxidation[J]. Micronanoelectronic Technology, 2019, 56(6): 493-498, 504.(in Chinese)
[57] C C CHEW, M S GORJI et al. Breakdown field enhancement of Si-based MOS capacitor by post-deposition annealing of the reactive sputtered ZrOxNy gate oxide. Applied Physics A, 122, 66(2016).
[58] G P WANG, L ZHANG, J J ZHANG. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 41, 797-828(2012).
[59] Z Y XING, Y T QI, Z Q TIAN et al. Identify the removable substructure in carbon activation. Chemistry of Materials, 29, 7288-7295(2017).
[60] L LIU, D YE, Y YU et al. Carbon-based flexible micro-supercapacitor fabrication via mask-free ambient micro-plasma-jet etching. Carbon, 111, 121-127(2017).
[61] H AN, Y LI, P LONG et al. Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. Journal of Power Sources, 312, 146-155(2016).
[62] S J ZHU, L LI, J B LIU et al. Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors. ACS Nano, 12, 1033-1042(2018).
[63] H YI, H W WANG, Y T JING et al. Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life. Journal of Power Sources, 285, 281-290(2015).
[64] B Y FUGARE, B J LOKHANDE. Study on structural, morphological, electrochemical and corrosion properties of mesoporous RuO2 thin films prepared by ultrasonic spray pyrolysis for supercapacitor electrode application. Materials Science in Semiconductor Processing, 71, 121-127(2017).
[65] R TUMMALA, R K GUDURU, P S MOHANTY. Nanostructured Co3O4 electrodes for supercapacitor applications from plasma spray technique. Journal of Power Sources, 209, 44-51(2012).
[66] [66] 66穆继亮, 耿文平, 何剑, 等. 三维硅基电容器W薄膜电极特性及影响[J]. 半导体技术, 2018, 43(10): 771-776. doi: 10.13290/j.cnki.bdtjs.2018.10.009MUJ L, GENGW P, HEJ, et al. Characteristics and effects of W thin films used as the electrodes on 3D silicon capacitors[J]. Semiconductor Technology, 2018, 43(10): 771-776. (in Chinese). doi: 10.13290/j.cnki.bdtjs.2018.10.009
[67] K GRIGORAS, J KESKINEN, L GRÖNBERG et al. Conformal titanium nitride in a porous silicon matrix: a nanomaterial for in-chip supercapacitors. Nano Energy, 26, 340-345(2016).
Get Citation
Copy Citation Text
Li XIONG, Jin HU, Zhao YANG, Guan-hua ZHANG. Research progress of microcapacitors: from preparation technology to development trend[J]. Optics and Precision Engineering, 2021, 29(12): 2818
Category: Micro/Nano Technology and Fine Mechanics
Received: Jan. 5, 2021
Accepted: --
Published Online: Jan. 20, 2022
The Author Email: ZHANG Guan-hua (guanhuazhang@hnu.edu.cn)