Microelectronics, Volume. 53, Issue 2, 272(2023)
Research Progress of New Generation SiGe BiCMOS Process with Ultra-High Speed
[1] [1] VASJANOV A, BARZDENAS V A. Review of advanced CMOS RF power amplifier architecture trends for low power 5G wireless networks [J]. Elec, 2018, 7(11): 271-287.
[2] [2] LIE D Y C, TSAY J, HALL T, et al. Recent progress on high-efficiency CMOS and SiGe RF power amplifier design [C] // IEEE Topical Conf Power Amplif Wirel Radio Applic (PAWR). Austin, TX, USA. 2016: 15-17.
[3] [3] RAGONESE E. Design techniques for low-voltage RF/mm-wave circuits in nanometer CMOS technologies [J]. Applied Sci, 2022, 12(4): 2103-2108.
[4] [4] CHEVALIER P, LIEBL W, RCKER H, et al. SiGe BiCMOS current status and future trends in europe [C] // IEEE BiCMOS Compound Semicond Integr Circ Technol Symp (BCICTS). San Diego, CA, USA. 2018: 64-71.
[5] [5] KISSINGER D, KAHMEN G, WEIGEL R. Millimeter-wave and terahertz transceivers in SiGe BiCMOS technologies [J]. IEEE Trans Microw Theo Techniq, 2021, 69(10): 4541-4560.
[6] [6] PREISLER E. A commercial foundry perspective of SiGe BiCMOS process technologies [C] // IEEE BiCMOS Compound Semicond Integr Circ Technol Symp (BCICTS). Monterey, CA, USA. 2020: 1-5.
[7] [7] ZHOU P G, CHEN J X, YAN P P. A broadband power amplifier in 130-nm SiGe BiCMOS technology [J]. IEEE Sol Sta Circ Lett, 2021, 4: 44-47.
[8] [8] GIAMMELLO V, RAGONESE E, PALMISANO G. A 15-dBm SiGe BiCMOS PA for 77-GHz automotive radar [J]. IEEE Trans Microw Theo Techniq, 2011, 59(11): 2910-2918.
[9] [9] PALLOTTA A, ROUX P, RIO D D, et al. SiGe:BiCMOS technology is enabling D-band link with active phased antenna array [C] // Joint European Conf Networks Commun & 6G Summit (EuCNC/6G Summit). Porto, Portugal. 2021: 496-501.
[10] [10] VALDECASA G S, PUERTAS O G, ALTABAS J A, et al. High-speed SiGe BiCMOS detector enabling a 28 Gbps quasi-coherent optical receiver [J]. IEEE Trans Circ Syst II: Expr Brie, 2022, 69(3): 964-968.
[11] [11] CLLISI M, MLLER M. A 120 GS/s 2:1 analog multiplexer with high linearity in SiGe-BiCMOS technology [C] // IEEE BiCMOS Compound Semicond Integr Circ Technol Symp (BCICTS). Monterey, CA, USA. 2020: 1-4.
[12] [12] RCKER H, HEINEMANN B. SiGe BiCMOS technology for mm-wave systems [C] // Int SoC Design Conf (ISOCC). Jeju, South Korea. 2012: 266-268.
[13] [13] CRESSLER J D. New developments in SiGe HBT reliability for RF through mmW circuits [C] // IEEE Int Reliab Phys Symp (IRPS). Monterey, CA, USA. 2021: 1-6.
[14] [14] VOINIGESCU S P, SHOPOV S, HOFFMAN J, et al. Analog and mixed-signal millimeter-wave SiGe BiCMOS circuits: state of the art and future scaling [C] // IEEE Compound Semicond Integr Circ Symp (CSICS). Austin, TX, USA. 2016: 1-4.
[15] [15] PAWLAK A, LEHMANN S, SAKALAS P, et al. SiGe HBT modeling for mm-wave circuit design [C] // IEEE Bipolar/BiCMOS Circ Technol Meet (BCTM). Boston, MA, USA. 2015: 149-156.
[16] [16] BCK J, AUFINGER K, BOGUTH S, et al. SiGe HBT and BiCMOS process integration optimization within the DOTSEVEN project [C] // IEEE Bipolar/BiCMOS Circ Technol Meet (BCTM). Boston, MA, USA. 2015: 121-124.
[17] [17] RCKER H, HEINEMANN B. Device architectures for high-speed SiGe HBTs [C] // IEEE BiCMOS Compound semicond Integr Circ Technol Symp (BCICTS). Nashville, TN, USA. 2019: 1-7.
[18] [18] JAIN V, KESSLER T, GROSS B J, et al. Device and circuit performance of SiGe HBTs in 130 nm BiCMOS process with fT/fMAX of 250/330 GHz [C] // IEEE Bipolar/BiCMOS Circ Technol Meet (BCTM). Coronado, CA, USA. 2014: 96-99.
[19] [19] RCKER H, HEINEMANN B. High-performance SiGe HBTs for next generation BiCMOS technology [J]. Semicond Sci Technol, 2018, 33(11): 114003.
[20] [20] DECOUTERE S, HUYLENBROECK S V, HEINEMANN B, et al. Advanced process modules and architectures for half-terahertz SiGe:C HBTs [C] // IEEE Bipolar/BiCMOS Circ Technol Meet (BCTM). Capri, Italy. 2009: 9-16.
[21] [21] CANDERLE E, CHEVALIER P, MONTAGNé A, et al. Extrinsic base resistance optimization in DPSA-SEG SiGe:C HBTs [C] // IEEE Bipolar/BiCMOS Circ Technol Meet (BCTM). Portland, OR, USA. 2012: 1-4.
[22] [22] CHAI F K, KIRCHGESSNER J, CROSS R, et al. Integration of selectively implanted collector (SIC) of SiGe:C HBT for optimised performance and manufacturability [C] // IEEE Bipolar/BiCMOS Circ Technol Meet (BCTM). Toulouse, France. 2003: 115-118.
[23] [23] HEINEMANN B, FOX A, RCKER H. Advanced transistor architectures for half-terahertz SiGe HBTs [C] // 5th SiGe, Ge, Related Compounds: Mater, Proces Dev Symp. 2012: 61-71.
[24] [24] CHEVALIER P, MEISTER T F, HEINEMANN B, et al. Towards THz SiGe HBTs [C] // IEEE Bipolar/BiCMOS Circ Technol Meet (BCTM). Atlanta, GA, USA. 2011: 57-65.
[25] [25] AL-SA’DI M, FREGONESE S, MANEUX C, et al. Modeling of a novel NPN-SiGe-HBT device structure using strain engineering technology in the collector region for enhanced electrical performance [C] // IEEE Bipolar/BiCMOS Circ Technol Meet (BCTM). Austin, TX, USA. 2010: 216-219.
[26] [26] WEN J, WEI J, SONG Q, et al. Design and simulation of strained Si/SiGe HBT architecture with uniaxially-stressed collector [C] // Int Symp Dev, Circ Syst (ISDCS). Higashihiroshima, Japan. 2021: 1-4.
[27] [27] SCHRTER M, ROSENBAUM T, CHEVALIER P, et al. SiGe HBT technology: future trends and TCAD-based roadmap [J]. Proceed IEEE, 2017, 105(6):1068-1086.
[28] [28] PANDA S R, FREGONESE S, CHAKRAVORTY A, et al. TCAD simulation and assessment of anomalous deflection in measured S-parameters of SiGe HBTs in THz range [C] // IEEE BiCMOS Compound Semicond Integr Circ Technol Symp (BCICTS). Nashville, TN, USA. 2019: 1-4.
[29] [29] SCHROTER M, ROSENBAUM T, VOINIGESCU S P, et al. A TCAD-based roadmap for high-speed SiGe HBTs [C] // IEEE 14th Topical Meet Silic Monolith Integr Circ RF Syst. Newport Beach, CA, USA. 2014: 80-82.
[30] [30] HASHIMOTO T, TOKUNAGA K, FUKUMOTO K, et al. SiGe HBT technology based on a 0.13-μm process featuring an fMAX of 325 GHz [J]. IEEE J Elec Dev Society, 2014, 2(4): 50-58.
[31] [31] LIEBL W, BOECK J, AUFINGER K, et al. SiGe applications in automotive radars [J]. ECS Transactions, 2016, 75(8): 91-102.
[32] [32] AVENIER G, DIOP M, CHEVALIER P, et al. 0.13 μm SiGe BiCMOS technology fully dedicated to mm-wave applications [J]. IEEE J Sol Sta Circ, 2009, 44(9): 2312-2321.
[33] [33] JOHN J P, KIRCHGESSNER J, MORGAN D, et al. Novel collector structure enabling low-cost millimeter-wave SiGe:C BiCMOS technology [C] // IEEE Radio Freq Integr Circ (RFIC) Symp. Honolulu, HI, USA. 2007: 559-562.
[34] [34] CHEVALIER P, AVENIER G, RIBES G, et al. A 55 nm triple gate oxide 9 metal layers SiGe BiCMOS technology featuring 320 GHz fT/370 GHz fMAX HBT and high-Q millimeter-wave passives [C] // IEEE Int Elec Dev Meet. San Francisco, CA, USA. 2014: 3.9.1-3.9.3.
[35] [35] LACHNER R. Industrialization of mmWave SiGe technologies: status, future requirements and challenges [C] // IEEE 13th Topical Meet Silic Monolith Integr Circ RF Syst. Austin, TX, USA. 2013: 105-107.
[36] [36] BCK J, AUFINGER K, BOGUTH S, et al. SiGe HBT and BiCMOS process integration optimization within the DOTSEVEN project [C] // IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM). Boston, MA, USA. 2015: 121-124.
[37] [37] GAUTHIER A, BORREL J, CHEVALIER P, et al. 450 GHz fT SiGe:C HBT featuring an implanted collector in a 55-nm CMOS node [C] // IEEE BiCMOS Compound Semicond Integr Circ Technol Symp (BCICTS). San Diego, CA, USA. 2018: 72-75.
[38] [38] HEINEMANN B, BARTH R, BOLZE D, et al. SiGe HBT technology with fT/fmax of 300 GHz/500 GHz and 2.0 ps CML gate delay [C] // IEEE Int Elec Dev Meet. San Francisco, CA, USA. 2010: 30.5.1-30.5.4.
[39] [39] HEINEMANN B, RCKER H, BARTH R, et al. Novel collector design for high-speed SiGe:C HBTs [C] // IEEE Int Elec Dev Meet. San Francisco, CA, USA. 2002: 775-778.
[40] [40] FOX A, HEINEMANN B, RCKER H. Double-polysilicon SiGe HBT architecture with lateral base link [J]. Sol Sta Elec, 2011, 60(1): 93-99.
[41] [41] FOX A, HEINEMANN B, RCKER H, et al. SiGe:C HBT architecture with epitaxial external base [C] // IEEE Bipolar/BiCMOS Circ Technol Meet (BCTM). Atlanta, GA, USA. 2011: 70-73.
[42] [42] FOX A, HEINEMANN B, RCKER H, et al. Advanced heterojunction bipolar transistor for half-THz SiGe BiCMOS technology [J]. IEEE Elec Dev Lett, 2015, 36(7): 642-644.
[43] [43] ORNER B A, LIU Q Z, RAINEY B, et al. A 0.13 μm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT [C] // IEEE Bipolar/BiCMOS Circ Technol Meet (BCTM). Toulouse, France. 2002: 203-206.
[44] [44] CAMILLO-CASTILLO R A, LIU Q Z, ADKISSON J W, et al. SiGe HBTs in 90 nm BiCMOS technology demonstrating 300 GHz/420 GHz fT/fMAX through reduced Rb and Ccb parasitics [C] // IEEE Bipolar/BiCMOS Circ Technol Meet (BCTM). Bordeaux, France. 2013: 227-230.
[45] [45] LIU Q Z, ADKISSON J W, JAIN V, et al. SiGe HBTs in 90 nm BiCMOS technology demonstrating fT/fMAX 285 GHz/475 GHz through simultaneous reduction of base resistance and extrinsic collector capacitance [C] // ECS & SMEQ Joint Int Meet. 2014: 285-294.
[46] [46] PREISLER E, TALOR G, HOWARD D, et al. A millimeter-wave capable SiGe BiCMOS process with 270 GHz fmax HBTs designed for high volume manufacturing [C] // IEEE Bipolar/BiCMOS Circ Technol Meet (BCTM). Atlanta, GA, USA. 2011: 74-78.
[47] [47] HEINEMANN B, RCKER H, BARTH R, et al. Novel collector design for high-speed SiGe:C HBTs [C] // IEEE Int Elec Dev Meet. San Francisco, CA, USA. 2002: 775-778.
[48] [48] HEINEMANN B, BARTH R, KNOLL D, et al. High-performance BiCMOS technologies without epitaxially-buried subcollectors and deep trenches [J]. Semicond Sci Technol, 2007, 22(1): 153.
[49] [49] MELAI J, MAGNE P, POUWEI L, et al. QUBiC generation 9, a new BiCMOS process optimized for mmwave applications [C] // IEEE Bipolar/BiCMOS Circ Technol Meet (BCTM). Boston, MA, USA. 2015: 113-116.
[50] [50] YOU S, HUYLENBROECK S V, NGUYEN N D, et al. Optimization of external poly base sheet resistance in 0.13 μm quasi self-aligned SiGe:C HBTs [J]. Thin Solid Films, 2010, 518(6): S68-S71.
[51] [51] RCKER H, HEINEMANN B, WINKLER W, et al. A 0.13 μm SiGe BiCMOS technology featuring fT/fmax of 240/330 GHz and gate delays below 3 ps [J]. IEEE J Sol Sta Circ, 2010, 45(9): 1678-1686.
[52] [52] ULUSOY A , SCHMID R L, ZEINOLABEDINZADEH S, et al. An investigation of fT and fmax degradation due to device interconnects in 0.5 THz SiGe HBT technology [C] // IEEE Bipolar/BiCMOS Circ Technol Meet (BCTM). Coronado, CA, USA. 2014: 211-214.
[53] [53] HEINEMANN B, RCKER H, BARTH R, et al. SiGe HBT with fT/fmax of 505 GHz/720 GHz [C] // IEEE Int Elec Dev Meet. San Francisco, CA, USA. 2016: 3.1.1-3.1.4.
[54] [54] PHILLIPS S, PREISLER E, ZHENG J, et al. Advances in foundry SiGe HBT BiCMOS processes through modeling and device scaling for ultra-high speed applications [C] // IEEE BiCMOS Compound Semicond Integr Circ Technol Symp (BCICTS). Monterey, CA, USA. 2021: 1-5.
[55] [55] LIU Q Z, ADKISSON J, BENOIT J, et al. A self-aligned sacrificial emitter process for high performance SiGe HBT in BiCMOS [J]. ECS Trans, 2012, 50 (9): 121-127.
[56] [56] PEKARIK J J, ADKISSON J, GRAY P, et al. A 90 nm SiGe BiCMOS technology for mm-wave and high-performance analog applications [C] // IEEE Bipolar/BiCMOS Circ Technol Meet (BCTM). Coronado, CA, USA. 2014: 92-95.
[57] [57] DONKERS J J T M, KRAMER M C J C M, VAN HUYLENBROECK S, et al. A novel fully self-aligned SiGe:C HBT architecture featuring a single-step epitaxial collector-base process [C] // IEEE Int Elec Dev Meet. Washington D C, USA. 2007: 655-658.
[58] [58] HUYLENBROECK S V, SIBAJA-HERNANDEZ A, VENEGAS R, et al. Pedestal collector optimization for high speed SiGe:C HBT [C] // IEEE Bipolar/BiCMOS Circ Technol Meet (BCTM). Atlanta, GA, USA. 2011: 66-69.
[59] [59] ZIMMER T, BCK J, BUCHALI F, et al. SiGe HBTs and BiCMOS Technology for present and future millimeter-wave systems [J]. IEEE J Microw, 2021, 1(1): 288-298.
[60] [60] PEKARIK J, JAIN V, KENNEY C, et al. SiGe HBTs with fT/fmax~375/510 GHz Integrated in 45 nm PDSOI CMOS [C] // IEEE BiCMOS Compound Semicond Integr Circ Technol Symp (BCICTS). Monterey, CA, USA. 2021: 1-4.
[61] [61] MANGER D, LIEBL W, BOGUTH S, et al. Integration of SiGe HBT with fT=305 GHz, fmax=537 GHz in 130 nm and 90 nm CMOS [C] // IEEE BiCMOS Compound Semicond Integr Circ Technol Symp (BCICTS). San Diego, CA, USA. 2018: 76-79.
[62] [62] PEKARIK J, JAIN V, KENNEY C. Challenges for SiGe BiCMOS in advanced-node SOI [J]. ECS Trans, 2022, 109(4): 141-149.
[63] [63] CHEVALIER P, AVENIER G, CANDERLE E, et al. Nanoscale SiGe BiCMOS technologies: from 55 nm reality to 14 nm opportunities and challenges [C] // IEEE Bipolar/BiCMOS Circ Technol Meet (BCTM). Boston, MA, USA. 2015: 80-87.
[64] [64] CHEVALIER P, SCHRTER M, BOLOGNESI C R, et al. Si/SiGe:C and InP/GaAsSb heterojunction bipolar transistors for THz applications [J]. Proceed IEEE, 2017, 105(6): 1035-1050.
[65] [65] FREGONESE S, DENG M, CABBIA M, et al. THz characterization and modeling of SiGe HBTs: review (invited) [J]. IEEE J Elec Dev Society, 2020, 8: 1363-1372.
Get Citation
Copy Citation Text
MA Yu, ZHANG Peijian, XU Xueliang, CHEN Xian, YI Xiaohui. Research Progress of New Generation SiGe BiCMOS Process with Ultra-High Speed[J]. Microelectronics, 2023, 53(2): 272
Category:
Received: Jan. 17, 2023
Accepted: --
Published Online: Dec. 15, 2023
The Author Email: