Optics and Precision Engineering, Volume. 23, Issue 1, 132(2015)
Three degrees of freedom modeling and adaptive neural network control for long-stroke wafer stage
[1] [1] TAN K K, LEE T H, HUANG S. Precision Motion Control: Design and Implementation [M]. Springer, 2008: 20-24.
[2] [2] ALBENDER F, LAMPAERT V, SWEVERS J. The generalized Maxwell-slip model: a novel model for friction simulation and compensation [J]. Automatic Control, IEEE Transactions on, 2005, 50(11): 1883-1887.
[3] [3] LIAO T L, CHIEN T I. An exponentially stable adaptive friction compensator [J]. Automatic Control, IEEE Transactions on, 2000, 45(5): 977-980.
[4] [4] TAN K K, HUANG S N, LEE T H. Robust adaptive numerical compensation for friction and force ripple in permanent-magnet linear motors [J]. Magnetics, IEEE Transactions on, 2002, 38(1): 221-228.
[5] [5] AHN H S, CHEN Y Q, DOU H. State-periodic adaptive compensation of cogging and coulomb friction in permanent magnet linear motors [C].American Control Conference, Proceedings of the 2005, IEEE, 2005: 3036-3041.
[6] [6] WANG C C, TOMIZUKA M. Design of robustly stable disturbance observers based on closed loop consideration using H∞ optimization and its applications to motion control systems [C].American Control Conference, Proceedings of the 2004, IEEE, 2004, 4: 3764-3769.
[7] [7] SU W T, LIAWC M. Adaptive positioningcontrol for a LPMSM drive based on adapted inverse model and robust disturbance observer [J]. Power Electronics, IEEE Transactions on, 2006, 21(2): 505-517.
[8] [8] XU L, YAO B. Output feedback adaptive robust precision motion control of linear motors [J].Automatica, 2001, 37(7): 1029-1039.
[9] [9] YAO B, XU L. Adaptive robust motion control of linear motors for precision manufacturing [J]. Mechatronics, 2002, 12(4): 595-616.
[10] [10] PASZKE W, MERRY R, MOLENGRAFT R. Iterative learning control by two-dimensional system theoryapplied to a motion system [C].American Control Conference, IEEE, 2007: 5484-5489.
[11] [11] AHN H S, CHEN Y Q, MOORE K L. Iterative learning control: brief survey and categorization [J]. IEEE Transactions on Systems Man and Cybernetics Part C, Applications and Reviews, 2007, 37(6): 1099.
[12] [12] LI P ZH, YAN F, GE CH, et al.. Open-closed loop iterative learning control of piezoelectric actuators [J]. Opt. Precision Eng., 2014, 22(2). (in Chinese)
[13] [13] LI P ZH, GE CH, SU ZH D, et al.. Control of piezoelectric ceramic actuator via dynamic fuzzy system model [J]. Opt. Precision Eng., 2013, 21(2): 394-399. (in Chinese)
[14] [14] CHEUNG J W F, HUNG Y S. Robust learning control of a high precision planar parallel manipulator [J]. Mechatronics, 2009, 19(1): 42-55.
[15] [15] WANG Y G, CHEN X L, LI X J. A PDμ motion controller design method for PMLM [J]. Journal of National University of Defense Technology, 2014, 36(1): 142-147. (in Chinese)
[17] [17] LUO Y, CHEN Y Q, AHN H S, et al.. Fractional order robust control for cogging effect compensation in PMSM position servo systems: stability analysis and experiments [J]. Control Engineering Practice, 2010, 18(9): 1022-1036.
[18] [18] BARBOSA R S, TENREIRO MACHADO J A, JESUS I S. Effect of fractional orders in the velocity control of a servo system [J]. Computers & Mathematics with Applications, 2010, 59(5): 1679-1686.
[19] [19] LI Y, QIANG S, ZHUANG X. Robust and adaptive backstepping control for nonlinear systems using RBF neural networks [J]. Neural Networks, IEEE Transactions on, 2004, 15(3): 693-701.
[20] [20] HUANG S, TAN K K, LEE T H, et al.. Adaptive control of mechanical systems using neural networks [J]. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 2007, 37(5): 897-903.
[21] [21] WANG S, YU D L. Adaptive RBF network for parameter estimation and stable air-fuel ratio control [J]. Neural Networks, 2008, 21(1): 102-112.
[22] [22] ZHU Q, FEI S, ZHANG T, et al.. Adaptive RBF neural-networks control for a class of time-delay nonlinear systems [J]. Neurocomputing, 2008, 71(16): 3617-3624.
[23] [23] WANG S, YU D L. Adaptive RBF network for parameter estimation and stable air-fuel ratio control [J]. Neural Networks, 2008, 21(1): 102-112.
[24] [24] SHUZHI S G, LEE T H, HARRIS C J. Adaptive Neural Network Control of Robotic Manipulators [M]. World Scientific, 1998.
[25] [25] ZHANG T, GE S S. Adaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directions [J]. Neural Networks, IEEE Transactions on, 2009, 20(3): 483-497.
[26] [26] LIAW H C, SHIRINZADEH B, SMITH J. Robust neural network motion tracking control of piezoelectric actuation systems for micro/nanomanipulation [J]. Neural Networks, IEEE Transactions on, 2009, 20(2): 356-367.
[27] [27] LIAW H C, SHIRINZADEH B. Neural network motion tracking control of piezo-actuated flexure-based mechanisms for micro-/nanomanipulation [J]. Mechatronics, IEEE/ASME Transactions on, 2009, 14(5): 517-527.
[28] [28] WANG S, YU D L. Adaptive RBF network for parameter estimation and stable air-fuel ratio control [J]. Neural Networks, 2008, 21(1): 102-112.
[29] [29] ZHU Q, FEI S, ZHANG T, et al.. Adaptive RBF neural-networks control for a class of time-delay nonlinear systems [J]. Neurocomputing, 2008, 71(16): 3617-3624.
[30] [30] KOBAYASHI H, OZAWA R. Adaptive neural network control of tendon-driven mechanisms with elastic tendons [J]. Automatica, 2003, 39(9): 1509-1519.
[31] [31] CHENG X P, PATEL R V. Neural network based tracking control of a flexible macro-micro manipulator system [J]. Neural Networks, 2003, 16(2): 271-286.
[32] [32] LEWIS F L, YESILDIREK A, LIU K. Multilayer neural-net robot controller with guaranteed tracking performance [J]. Neural Networks, IEEE Transactions on, 1996, 7(2): 388-399.
Get Citation
Copy Citation Text
WANG Yi-guang, CHEN Xing-lin, LI Xiao-jie. Three degrees of freedom modeling and adaptive neural network control for long-stroke wafer stage[J]. Optics and Precision Engineering, 2015, 23(1): 132
Category:
Received: May. 4, 2014
Accepted: --
Published Online: Feb. 15, 2015
The Author Email: Yi-guang WANG (yiguangwang@yahoo.com)