Optics and Precision Engineering, Volume. 30, Issue 14, 1643(2022)
Nano-reinforced substrate integration in SERS microfluidic chip for bacteria detection
[1] [1] 1梁金姬, 宋德涵, 李韵辞, 等. 金黄色葡萄球菌检测方法研究进展[J]. 山东化工, 2015, 44(10): 41-42. doi: 10.3969/j.issn.1008-021X.2015.10.013LIANGJ J, SONGD H, LIY C, et al. Research progress on detection methods of staphylococcus aureus[J]. Shandong Chemical Industry, 2015, 44(10): 41-42.(in Chinese). doi: 10.3969/j.issn.1008-021X.2015.10.013
[2] G DURAND, M PEYRET et al. Rapid clinical bacteriology and its future impact. Annals of Laboratory Medicine, 33, 14-27(2013).
[3] A A ALI, A B ALTEMIMI, N ALHELFI et al. Application of biosensors for detection of pathogenic food bacteria: a review. Biosensors, 10, 58(2020).
[4] [4] 4王品一, 万福, 王建新, 等. 注入锁定腔增强拉曼光谱微量气体检测技术[J]. 光学 精密工程, 2018, 26(8): 1917-1924. doi: 10.3788/ope.20182608.1917WANGP Y, WANF, WANGJ X, et al. Trace gas detection using cavity-enhanced Raman spectroscopy with injection locking[J]. Opt. Precision Eng., 2018, 26(8): 1917-1924.(in Chinese). doi: 10.3788/ope.20182608.1917
[5] [5] 5任斌, 田中群. 表面增强拉曼光谱的研究进展[J]. 现代仪器, 2004, 10(5): 1-8, 13. doi: 10.3969/j.issn.1672-7916.2004.05.001RENB, TIANZ Q. The progress in surface-enhanced Raman spectroscopy[J]. Modern Instruments, 2004, 10(5): 1-8, 13.(in Chinese). doi: 10.3969/j.issn.1672-7916.2004.05.001
[6] D D GALVAN, Q M YU. Surface-enhanced Raman scattering for rapid detection and characterization of antibiotic-resistant bacteria. Advanced Healthcare Materials, 7(2018).
[7] S EFRIMA, L ZEIRI. Understanding SERS of bacteria. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 40, 277-288(2009).
[8] P N NGE, C I ROGERS, A T WOOLLEY. Advances in microfluidic materials, functions, integration, and applications. Chemical Reviews, 113, 2550-2583(2013).
[9] A WALTER, A MÄRZ, W SCHUMACHER et al. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab on a Chip, 11, 1013-1021(2011).
[10] M MOSKOVITS. Surface-enhanced spectroscopy. Reviews of Modern Physics, 57, 783-826(1985).
[11] K KNEIPP, H KNEIPP, I ITZKAN et al. Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter, 14, R597-R624(2002).
[12] D Y WU, J F LI, B REN et al. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chemical Society Reviews, 37, 1025(2008).
[13] C W LEE, F G TSENG. Surface enhanced Raman scattering (SERS) based biomicrofluidics systems for trace protein analysis. Biomicrofluidics, 12(2018).
[14] S Y DING, J YI, J F LI et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials, 1, 16021(2016).
[15] B YANG, Y WANG, S GUO et al. Charge transfer study for semiconductor and semiconductor/metal composites based on surface-enhanced Raman scattering. Bulletin of the Korean Chemical Society, 42, 1411-1418(2021).
[16] F TIAN, F BONNIER, A CASEY et al. Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape. Analytical Methods, 6, 9116-9123(2014).
[17] [17] 17张倩, 苏碧云, 黄剑. 基于LSPR效应的高活性SERS基底研究进展[J]. 应用化工, 2020, 49(3): 709-714. doi: 10.3969/j.issn.1671-3206.2020.03.040ZHANGQ, SUB Y, HUANGJ. Research progress on preparation of high active substrate base LSPR effect[J]. Applied Chemical Industry, 2020, 49(3): 709-714.(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.03.040
[18] X ZHOU, Z W HU, D T YANG et al. Bacteria detection: from powerful SERS to its advanced compatible techniques. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 7, 2001739(2020).
[19] S FATEIXA, H I S NOGUEIRA, T TRINDADE. SERS research applied to polymer based nanocomposites(2018).
[20] [20] 20常颖, 赵阳, 高利生. 微流控芯片–表面增强拉曼光谱法快速测定污水中氯胺酮[J]. 化学分析计量, 2020, 29(6): 33-37. doi: 10.3969/j.issn.1008-6145.2020.06.008CHANGY, ZHAOY, GAOL S. Rapid determination of ketamine in sewage by microfluidic chip–surface enhanced Raman spectroscopy[J]. Chemical Analysis and Meterage, 2020, 29(6): 33-37.(in Chinese). doi: 10.3969/j.issn.1008-6145.2020.06.008
[21] [21] 21王利华, 王佳慧, 韩艳云, 等. Au@Ag纳米粒子表面增强拉曼光谱法高灵敏检测孔雀石绿[J]. 武汉工程大学学报, 2018, 40(1): 40-45. doi: 10.3969/j.issn.1674-2869.2018.01.007WANGL H, WANGJ H, HANY Y, et al. Highly sensitive detection of malachite green by surface-enhanced Raman scattering method using Au@Ag nanoparticles[J]. Journal of Wuhan Institute of Technology, 2018, 40(1): 40-45.(in Chinese). doi: 10.3969/j.issn.1674-2869.2018.01.007
[22] J Q TANG, Q H ZHANG, C Y ZENG et al. Preparation of large-area surface-enhanced Raman scattering active Ag and Ag/Au nanocomposite films. Applied Physics A, 111, 1099-1105(2013).
[23] Z Y BAO, D Y LEI, R B JIANG et al. Bifunctional Au@Pt core-shell nanostructures for
[24] Y F PANG, N WAN, L L SHI et al. Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au. Analytica Chimica Acta, 1077, 288-296(2019).
[25] Q Q DING, H L LIU, L B YANG et al. Speedy and surfactant-free
[26] Q DING, Y MA, Y YE et al. A simple method to prepare the magnetic Ni@Au core‐shell nanostructure for the cycle surface enhanced Raman scattering substrates. Journal of Raman Spectroscopy, 44, 987-993(2013).
[27] I ALESSANDRI. Enhancing Raman scattering without plasmons: unprecedented sensitivity achieved by TiO2 shell-based resonators. Journal of the American Chemical Society, 135, 5541-5544(2013).
[28] J HUANG, F CHEN, Q ZHANG et al. 3D silver nanoparticles decorated zinc oxide/silicon heterostructured nanomace arrays as high-performance surface-enhanced Raman scattering substrates. ACS Applied Materials & Interfaces, 7, 5725-5735(2015).
[29] H XU, J HUANG, Y CHEN. Synthesis and characterization of porous CuO nanorods. Integrated Ferroelectrics, 129, 25-29(2011).
[30] P LIU, H J CHEN, H WANG et al. Fabrication of Si/Au core/shell nanoplasmonic structures with ultrasensitive surface-enhanced Raman scattering for monolayer molecule detection. The Journal of Physical Chemistry C, 119, 1234-1246(2015).
[31] [31] 31张晓蕾, 张洁, 朱永. CNTs/AgNPs复合结构的微流控表面增强拉曼散射实验[J]. 中国激光, 2019, 46(10): 1011001. doi: 10.3788/cjl201946.1011001ZHANGX L, ZHANGJ, ZHUY. Microfluidic surface-enhanced Raman scattering experiment using CNTs/AgNPs composite structure[J]. Chinese Journal of Lasers, 2019, 46(10): 1011001.(in Chinese). doi: 10.3788/cjl201946.1011001
[32] S LEE, J CHOI, L X CHEN et al. Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor. Analytica Chimica Acta, 590, 139-144(2007).
[33] K H YEA, S LEE, J B KYONG et al. Ultra-sensitive trace analysis of cyanide water pollutant in a PDMS microfluidic channel using surface-enhanced Raman spectroscopy. The Analyst, 130, 1009-1011(2005).
[34] C Y LEE, C L CHANG, Y N WANG et al. Microfluidic mixing: a review. International Journal of Molecular Sciences, 12, 3263-3287(2011).
[35] I J HIDI, M JAHN, K WEBER et al. Lab-on-a-chip-surface enhanced Raman scattering combined with the standard addition method: toward the quantification of nitroxoline in spiked human urine samples. Analytical Chemistry, 88, 9173-9180(2016).
[36] R K GAO, Z Y CHENG, A J DEMELLO et al. Wash-free magnetic immunoassay of the PSA cancer marker using SERS and droplet microfluidics. Lab on a Chip, 16, 1022-1029(2016).
[37] H B PU, W XIAO, D W SUN. SERS-microfluidic systems: a potential platform for rapid analysis of food contaminants. Trends in Food Science & Technology, 70, 114-126(2017).
[38] R WANG, Y XU, C Y WANG et al. Fabrication of ITO-rGO/Ag NPs nanocomposite by two-step chronoamperometry electrodeposition and its characterization as SERS substrate. Applied Surface Science, 349, 805-810(2015).
[39] R WANG, Y XU, R J WANG et al. A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine. Microchimica Acta, 184, 279-287(2017).
[40] [40] 40陈李, 李丹阳, 杨峰, 等. 阵列式柔性纸基SERS细菌检测芯片的制备[J]. 光学 精密工程, 2020, 28(1): 110-118. doi: 10.3788/ope.20202801.0110CHENL, LID Y, YANGF, et al. Fabrication of array flexible paper-based SERS microarray for bacterial detection[J]. Opt. Precision Eng., 2020, 28(1): 110-118.(in Chinese). doi: 10.3788/ope.20202801.0110
[41] G CHEN, Y Y WANG, H L WANG et al. A highly sensitive microfluidics system for multiplexed surface-enhanced Raman scattering (SERS) detection based on Ag nanodot arrays. RSC Adv, 4, 54434-54440(2014).
[42] M VIEHRIG, S T RAJENDRAN, K SANGER et al. Quantitative SERS assay on a single chip enabled by electrochemically assisted regeneration: a method for detection of melamine in milk. Analytical Chemistry, 92, 4317-4325(2020).
[43] Y Q ZHAO, Y L ZHANG, J A HUANG et al. Plasmonic nanopillar array embedded microfluidic chips: an
[44] B C GALARRETA, M TABATABAEI, V GUIEU et al. Microfluidic channel with embedded SERS 2D platform for the aptamer detection of ochratoxin A. Analytical and Bioanalytical Chemistry, 405, 1613-1621(2013).
[45] C Y WANG, X Q MU, J HUO et al. Highly-efficient SERS detection for E. coli using a microfluidic chip with integrated NaYF4: Yb, Er@SiO2@Au under near-infrared laser excitation. Microsystem Technologies, 27, 3285-3291(2021).
[46] S SEVIM, C FRANCO, X Z CHEN et al. SERS barcode libraries: a microfluidic approach. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 7, 1903172(2020).
[47] C Y WANG, Y XU, H Z ZHAO et al. Detection and analysis of SERS effect of nano gold by self-assembly chemical plating composite method. Applied Surface Science, 353, 750-756(2015).
[48] C Y WANG, Y XU, C H DENG et al. Design and preparation of a recyclable microfluidic SERS chip with integrated Au@Ag/TiO2 NTs. RSC Advances, 6, 113115-113122(2016).
[49] H Z ZHAO, Y XU, C Y WANG et al. Design and fabrication of a microfluidic SERS chip with integrated Ag film@nanoAu. RSC Advances, 6, 14105-14111(2016).
[50] J PARISI, L SU, Y LEI.
[51] L WANG, G ZHOU, X L GUAN et al. Rapid preparation of surface-enhanced Raman substrate in microfluidic channel for trace detection of amoxicillin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 235, 118262(2020).
[52] D LAWANSTIEND, H GATEMALA, S NOOTCHANAT et al. Microfluidic approach for
[53] B B XU, Z C MA, L WANG et al. Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels. Lab on a Chip, 11, 3347-3351(2011).
[54] B B XU, R ZHANG, X Q LIU et al. On-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing
[55] Y L XIE, S K YANG, Z M MAO et al.
[56] P X WANG, Y SUN, X LI et al. Recent advances in dual recognition based surface enhanced Raman scattering for pathogenic bacteria detection: a review. Analytica Chimica Acta, 1157, 338279(2021).
[57] J SUN, L GONG, W J WANG et al. Surface-enhanced Raman spectroscopy for on-site analysis: a review of recent developments. Luminescence: the Journal of Biological and Chemical Luminescence, 35, 808-820(2020).
[58] B X LIU, T WU, X H YANG et al. Portable microfluidic chip based surface-enhanced Raman spectroscopy sensor for crystal violet. Analytical Letters, 47, 2682-2690(2014).
[59] N E DINA, A M R GHERMAN, A COLNITĂ et al. Fuzzy characterization and classification of bacteria species detected at single-cell level by surface-enhanced Raman scattering. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 247, 119149(2021).
[60] [60] 60刘燕德, 靳昙昙, 王海阳. 基于拉曼光谱的三组分食用调和油快速定量检测[J]. 光学 精密工程, 2015, 23(9): 2490-2496. doi: 10.3788/ope.20152309.2490LIUY D, JINT T, WANGH Y. Rapid quantitative determination of components in ternary blended edible oil based on Raman spectroscopy[J]. Opt. Precision Eng., 2015, 23(9): 2490-2496.(in Chinese). doi: 10.3788/ope.20152309.2490
[61] N A MUNGROO, G OLIVEIRA, S NEETHIRAJAN. SERS based point-of-care detection of food-borne pathogens. Microchimica Acta, 183, 697-707(2016).
[62] A MÜHLIG, T BOCKLITZ, I LABUGGER et al. LOC-SERS: a promising closed system for the identification of mycobacteria. Analytical Chemistry, 88, 7998-8004(2016).
[63] J Y ZHANG, W R PREMASIRI et al. Rapid point-of-care concentration of bacteria in a disposable microfluidic device using meniscus dragging effect. Lab on a Chip, 10, 3265-3270(2010).
[64] J H LEE, S K LEE, J H KIM et al. Separation of particles with bacterial size range using the control of sheath flow ratio in spiral microfluidic channel. Sensors and Actuators A: Physical, 286, 211-219(2019).
[65] W G PITT, M ALIZADEH, G A HUSSEINI et al. Rapid separation of bacteria from blood-review and outlook. Biotechnology Progress, 32, 823-839(2016).
[66] H Y LIN, C H HUANG, W H HSIEH et al. On-line SERS detection of single bacterium using novel SERS nanoprobes and a microfluidic dielectrophoresis device. Small (Weinheim an Der Bergstrasse, Germany), 10, 4700-4710(2014).
[67] K KWON, H GWAK, K A HYUN et al. High-throughput microfluidic chip for magnetic enrichment and photothermal DNA extraction of foodborne bacteria. Sensors and Actuators B: Chemical, 294, 62-68(2019).
[68] B KRAFFT, A TYCOVA, R D URBAN et al. Microfluidic device for concentration and SERS-based detection of bacteria in drinking water. Electrophoresis, 42, 86-94(2021).
[69] K W CHANG, H W CHENG, J SHIUE et al. Antibiotic susceptibility test with surface-enhanced Raman scattering in a microfluidic system. Analytical Chemistry, 91, 10988-10995(2019).
[70] I F CHENG, C C LIN, D Y LIN et al. A dielectrophoretic chip with a roughened metal surface for on-chip surface-enhanced Raman scattering analysis of bacteria. Biomicrofluidics, 4(2010).
[71] X SU, R REN, Y WU et al. Study of biochip integrated with microelectrodes modified by poly-dopamine-co-chitosan composite gel for separation, enrichment and detection of microbes in the aerosol. Biosensors and Bioelectronics, 176, 112931(2021).
[72] I F CHENG, T Y CHEN, R J LU et al. Rapid identification of bacteria utilizing amplified dielectrophoretic force-assisted nanoparticle-induced surface-enhanced Raman spectroscopy. Nanoscale Research Letters, 9, 324(2014).
[73] I F CHENG, H C CHANG, T Y CHEN et al. Rapid (5 min) identification of pathogen in human blood by electrokinetic concentration and surface-enhanced Raman spectroscopy. Scientific Reports, 3, 2365(2013).
[74] E WITKOWSKA, A M ŁASICA, K NICIŃSKI et al. In search of spectroscopic signatures of periodontitis: a SERS-based magnetomicrofluidic sensor for detection of porphyromonas gingivalis and aggregatibacter actinomycetemcomitans. ACS Sensors, 6, 1621-1635(2021).
[75] C WANG, F MADIYAR, C X YU et al. Detection of extremely low concentration waterborne pathogen using a multiplexing self-referencing SERS microfluidic biosensor. Journal of Biological Engineering, 11, 9(2017).
[76] F R MADIYAR, S BHANA, L Z SWISHER et al. Integration of a nanostructured dielectrophoretic device and a surface-enhanced Raman probe for highly sensitive rapid bacteria detection. Nanoscale, 7, 3726-3736(2015).
[77] L L SHI, L XU, R XIAO et al. Rapid, quantitative, high-sensitive detection of escherichia coli O157: H7 by gold-shell silica-core nanospheres-based surface-enhanced Raman scattering lateral flow immunoassay. Frontiers in Microbiology, 11, 596005(2020).
[78] C CATALA, B MIR-SIMON, X T FENG et al. Online SERS quantification of
[79] R M JARVIS, N LAW, I T SHADI et al. Surface-enhanced Raman scattering from intracellular and extracellular bacterial locations. Analytical Chemistry, 80, 6741-6746(2008).
Get Citation
Copy Citation Text
Shifang LI, Hong HE, Chuang GE, Li CHEN, Yi XU. Nano-reinforced substrate integration in SERS microfluidic chip for bacteria detection[J]. Optics and Precision Engineering, 2022, 30(14): 1643
Category: Modern Applied Optics
Received: Mar. 9, 2022
Accepted: --
Published Online: Sep. 6, 2022
The Author Email: GE Chuang (xuyibbd@cqu.edu.cn), XU Yi (gechuang1115@163.com)