Acta Optica Sinica, Volume. 42, Issue 11, 1134005(2022)

Recent Progress in Nanofabrication of High Resolution X-Ray Zone Plate Lenses by Electron Beam Lithography

Yifang Chen*
Author Affiliations
  • School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • show less
    References(49)

    [1] Maser J, Lai B, Buonassisi T et al. A next-generation in situ nanoprobe beamline for the advanced photon source[J]. Proceedings of SPIE, 8851, 15-20(2013).

    [2] Falch K V, Casari D, Michiel M et al. In situ hard X-ray transmission microscopy for material science[J]. Journal of Materials Science, 52, 3497-3507(2017).

    [3] Guttmann P, Bittencourt C. Overview of nanoscale NEXAFS performed with soft X-ray microscopes[J]. Beilstein Journal of Nanotechnology, 6, 595-604(2015).

    [4] Balles A, Zabler S, Ebensperger T et al. Propagator based formalism for optimizing in-line phase contrast imaging in laboratory X-ray setups[J]. The Review of Scientific Instruments, 87, 093707(2016).

    [5] Lider V V. X-ray microscopy[J]. Physics-Uspekhi, 60, 187-203(2017).

    [6] Holmberg A, Reinspach J, Lindblom M et al. Towards 10-nm soft X-ray zone plate fabrication[C]. AIP Conference Proceedings, 1365, 18-23(2011).

    [7] Rez P. Coherent and incoherent imaging of biological specimens with electrons and X-rays[J]. Ultramicroscopy, 231, 113301(2021).

    [8] Nugent K. X-ray imaging of a single virus in 3D[J]. Physics, 8, 19(2015).

    [9] Ekeberg T, Svenda M, Abergel C et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser[J]. Physical Review Letters, 114, 098102(2015).

    [10] Vila-Comamala J, Gorelick S, Färm E et al. Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime[J]. Optics Express, 19, 175-184(2011).

    [11] Chen Y, Lai P, Huang H Z et al. Open localization in 3D package with TSV daisy chain using magnetic field imaging and high-resolution three-dimensional X-ray microscopy[J]. Applied Sciences, 11, 8148(2021).

    [12] Lee S J, Theerthagiri J, Choi M Y. Time-resolved dynamics of laser-induced cavitation bubbles during production of Ni nanoparticles via pulsed laser ablation in different solvents and their electrocatalytic activity for determination of toxic nitroaromatics[J]. Chemical Engineering Journal, 427, 130970(2022).

    [13] Eckermann M, van der Meer F, Cloetens P et al. Three-dimensional virtual histology of the cerebral cortex based on phase-contrast X-ray tomography[J]. Biomedical Optics Express, 12, 7582-7598(2021).

    [14] Sakdinawat A, Attwood D. Nanoscale X-ray imaging[J]. Nature Photonics, 4, 840-848(2010).

    [15] Ice G E, Budai J D. Pang J W L. The race to X-ray microbeam and nanobeam science[J]. Science, 334, 1234-1239(2011).

    [16] Paunesku T, Vogt S, Irving T C et al. Biological applications of X-ray microprobes[J]. International Journal of Radiation Biology, 85, 710-713(2009).

    [17] Paunesku T, Vogt S, Maser J et al. X-ray fluorescence microprobe imaging in biology and medicine[J]. Journal of Cellular Biochemistry, 99, 1489-1502(2006).

    [18] Peuker M. High-efficiency nickel phase zone plates with 20 nm minimum outermost zone width[J]. Applied Physics Letters, 78, 2208-2210(2001).

    [19] Keskinbora K, Robisch A L, Mayer M et al. Multilayer Fresnel zone plates for high energy radiation resolve 21 nm features at 1.2 keV[J]. Optics Express, 22, 18440-18453(2014).

    [20] Yin G C, Song Y F, Tang M T et al. 30 nm resolution X-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope[J]. Applied Physics Letters, 89, 221122(2006).

    [21] da Silva J C, Pacureanu A, Yang Y et al. Efficient concentration of high-energy X-rays for diffraction-limited imaging resolution[J]. Optica, 4, 492-495(2017).

    [22] Takahashi Y, Nishino Y, Mimura H et al. Feasibility study of high-resolution coherent diffraction microscopy using synchrotron X rays focused by Kirkpatrick-Baez mirrors[J]. Journal of Applied Physics, 105, 083106(2009).

    [23] Bouet N, Macrander A T, Maser J et al. Large aperture and wedged multilayer Laue lens for X-ray nanofocusing[J]. Journal of Nanoscience and Nanotechnology, 19, 575-584(2019).

    [24] Nazaretski E, Yan H, Lauer K et al. Design and performance of an X-ray scanning microscope at the Hard X-ray Nanoprobe beamline of NSLS-II[J]. Journal of Synchrotron Radiation, 24, 1113-1119(2017).

    [25] Stein A, Evans-Lutterodt K, Bozovic N et al. Fabrication of silicon kinoform lenses for hard X-ray focusing by electron beam lithography and deep reactive ion etching[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 26, 122(2008).

    [26] Tiwari M K, Alianelli L, Dolbnya I P et al. Application of Kinoform lens for X-ray reflectivity analysis[J]. Journal of Synchrotron Radiation, 17, 237-242(2010).

    [27] Yan H F. X-ray nanofocusing by Kinoform lenses: a comparative study using different modeling approaches[J]. Physical Review B, 81, 075402(2010).

    [28] Sanli U T, Ceylan H, Bykova I et al. 3D nanoprinted plastic kinoform X-ray optics[J]. Advanced Materials, 30, 1802503(2018).

    [29] Lengeler B, Schroer C G, Kuhlmann M et al. Refractive X-ray lenses[J]. Journal of Physics D: Applied Physics, 38, A218-A222(2005).

    [30] Falkenberg G, Seiboth F, Koch F et al. CRL optics and silicon drift detector for P06 microprobe experiments at 35 keV[J]. Powder Diffraction, 35, S34-S37(2020).

    [31] Chao W L, Kim J, Rekawa S et al. Demonstration of 12 nm resolution Fresnel zone plate lens based soft X-ray microscopy[J]. Optics Express, 17, 17669-17677(2009).

    [32] Mohacsi I, Vartiainen I, Rösner B et al. Interlaced zone plate optics for hard X-ray imaging in the 10 nm range[J]. Scientific Reports, 7, 43624(2017).

    [33] Liu C A, Conley R, Macrander A T et al. A multilayer nanostructure for linear zone-plate applications[J]. Thin Solid Films, 515, 654-657(2006).

    [34] Matsuyama S, Mimura H, Yumoto H et al. Development of scanning X-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics[J]. Review of Scientific Instruments, 77, 103102(2006).

    [35] Chen Y F. Fabrications and imaging characterisations of diffractive X ray optics[J]. Optics and Precision Engineering, 25, 2779-2795(2017).

    [36] Gorelick S, Vila-Comamala J, Guzenko V A et al. High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating[J]. Journal of Synchrotron Radiation, 18, 442-446(2011).

    [37] Gorelick S, Vila-Comamala J, Guzenko V et al. Direct e-beam writing of high aspect ratio nanostructures in PMMA: a tool for diffractive X-ray optics fabrication[J]. Microelectronic Engineering, 87, 1052-1056(2010).

    [38] Guzenko V A, Romijn J, Vila-Comamala J et al. Efficient E-beam lithography exposure strategies for diffractive X-ray optics[C]. AIP Conference Proceedings, 1365, 92-95(2011).

    [39] Rösner B, Koch F, Döring F et al. Exploiting atomic layer deposition for fabricating sub-10 nm X-ray lenses[J]. Microelectronic Engineering, 191, 91-96(2018).

    [40] Rösner B, Finizio S, Koch F et al. Soft X-ray microscopy with 7 nm resolution[J]. Optica, 7, 1602-1608(2020).

    [41] Vila-Comamala J, Gorelick S, Färm E et al. Zone-doubled Fresnel zone plates for scanning transmission X-ray microscopy[C]. AIP Conference Proceedings, 1365, 192-195(2011).

    [42] Jefimovs K, Vila-Comamala J, Pilvi T et al. Zone-doubling technique to produce ultrahigh-resolution X-ray optics[J]. Physical Review Letters, 99, 264801(2007).

    [43] Liu J P, Shao J H, Zhang S C et al. Simulation and experimental study of aspect ratio limitation in Fresnel zone plates for hard-X-ray optics[J]. Applied Optics, 54, 9630-9636(2015).

    [44] Liu J P, Li X, Chen S et al. Nanofabrication and characterization of a grating-based condenser for uniform illumination with hard X-rays[J]. Journal of Synchrotron Radiation, 24, 595-599(2017).

    [45] Xie S S, Liu J P, Zhang S C et al. Zone shape control by pattern-assisted proximity effect correction in e-beam lithography for efficiency enhancement in X-ray optics[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 17, 043502(2018).

    [46] Zhu J Y, Zhang S C, Xie S S et al. Nanofabrication of 50 nm zone plates through e-beam lithography[J]. Chinese Physics B, 29, 047501(2020).

    [47] Zhu J Y, Chen Y F, Xie S S et al. Nanofabrication of 30 nm Au zone plates by e-beam lithography and pulse voltage electroplating for soft X-ray imaging[J]. Microelectronic Engineering, 225, 111254(2020).

    [48] Chen Y F. Nanofabrication by electron beam lithography and its applications: a review[J]. Microelectronic Engineering, 135, 57-72(2015).

    [49] Zhu J Y, Chen Y F, Xie S S et al. Nanofabrication of 30 nm Au zone plates by e-beam lithography and pulse voltage electroplating for soft X-ray imaging[J]. Microelectronic Engineering, 225, 111254(2020).

    Tools

    Get Citation

    Copy Citation Text

    Yifang Chen. Recent Progress in Nanofabrication of High Resolution X-Ray Zone Plate Lenses by Electron Beam Lithography[J]. Acta Optica Sinica, 2022, 42(11): 1134005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: X-Ray Optics

    Received: Feb. 9, 2022

    Accepted: Apr. 18, 2022

    Published Online: Jun. 3, 2022

    The Author Email: Chen Yifang (yifangchen@fudan.edu.cn)

    DOI:10.3788/AOS202242.1134005

    Topics