International Journal of Extreme Manufacturing, Volume. 5, Issue 3, 35008(2023)

Acousto-optic scanning spatial-switching multiphoton lithography

Binzhang Jiao1... Fayu Chen1, Yuncheng Liu1, Xuhao Fan1, Shaoqun Zeng1,2, Qi Dong1, Leimin Deng1,2, Hui Gao1,2,*, and and Wei Xiong12 |Show fewer author(s)
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
  • 2Optics Valley Laboratory, Wuhan, Hubei 430074, People’s Republic of China
  • show less
    References(70)

    [1] [1] Kelly B E, Bhattacharya I, Heidari H, Shusteff M, Spadaccini C M and Taylor H K 2019 Volumetric additive manufacturing via tomographic reconstruction Science 363 1075–9

    [2] [2] Zheng X Y et al 2016 Multiscale metallic metamaterials Nat. Mater. 15 1100–6

    [3] [3] Tumbleston J R et al 2015 Continuous liquid interface production of 3D objects Science 347 1349–52

    [4] [4] Walker D A, Hedrick J L and Mirkin C A 2019 Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface Science 366 360–4

    [5] [5] Regehly M, Garmshausen Y, Reuter M, K.nig N F, Israel E, Kelly D P, Chou C-Y, Koch K, Asfari B and Hecht S 2020 Xolography for linear volumetric 3D printing Nature 588 620–4

    [6] [6] Hahn V, Rietz P, Hermann F, Müller P, Barner-Kowollik C, Schl.der T, Wenzel W, Blasco E and Wegener M 2022 Light-sheet 3D microprinting via two-colour two-step absorption Nat. Photon. 16 784–91

    [7] [7] Hahn V, Messer T, Bojanowski N M, Curticean E R, Wacker I, Schr.der R R, Blasco E and Wegener M 2021 Two-step absorption instead of two-photon absorption in 3D nanoprinting Nat. Photon. 15 932–8

    [8] [8] Sanders S N, Schloemer T H, Gangishetty M K, Anderson D, Seitz M, Gallegos A O, Stokes R C and Congreve D N 2022 Triplet fusion upconversion nanocapsules for volumetric 3D printing Nature 604 474–8

    [9] [9] Chen Y Q, Shu Z W, Zhang S, Zeng P, Liang H K, Zheng M J and Duan H G 2021 Sub-10 nm fabrication: methods and applications Int. J. Extrem. Manuf. 3 032002

    [10] [10] Ge Q, Li Z Q, Wang Z L, Kowsari K, Zhang W, He X N, Zhou J L and Fang N X 2020 Projection micro stereolithography based 3D printing and its applications Int. J. Extrem. Manuf. 2 022004

    [11] [11] Chen L, Duan G H, Zhang C, Cheng P and Wang Z L 2022 3D printed hydrogel for soft thermo-responsive smart window Int. J. Extrem. Manuf. 4 025302

    [12] [12] ZhangWQ,Ye HT, FengXB,ZhouWZ,CaoK,LiMY, Fan S F and Lu Y 2022 Tailoring mechanical properties of PμSL 3D-printed structures via size effect Int. J. Extrem. Manuf. 4 045201

    [13] [13] Gissibl T, Thiele S, Herkommer A and Giessen H 2016 Two-photon direct laser writing of ultracompact multi-lens objectives Nat. Photon. 10 554–60

    [14] [14] Porte X, Dinc N U, Moughames J, Panusa G, Juliano C, Kadic M, Moser C, Brunner D and Psaltis D 2021 Direct (3+1)D laser writing of graded-index optical elements Optica 8 1281–7

    [15] [15] Kubec A, Zdora M-C, Sanli U T, Diaz A, Vila-Comamala J and David C 2022 An achromatic x-ray lens Nat. Commun. 13 1305

    [16] [16] Chan J Y E, Ruan Q F, Jiang M H, Wang H T, Wang H, Zhang W, Qiu C-W and Yang J K W 2021 High-resolution light field prints by nanoscale 3D printing Nat. Commun. 12 3728

    [17] [17] Nair S P, Trisno J, Wang H T and Yang J K W 2021 3D printed fiber sockets for plug and play micro-optics Int. J. Extrem. Manuf. 3 015301

    [18] [18] Liu S-F, Hou Z-W, Lin L H, Li F, Zhao Y, Li X-Z, Zhang H, Fang H-H, Li Z C and Sun H-B 2022 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding Science 377 1112–6

    [19] [19] Wang H, Ruan Q F, Wang H T, Rezaei S D, Lim K T P, Liu H L, ZhangW, Trisno J,ChanJYE and Yang J KW 2021 Full color and grayscale painting with 3D printed low-index nanopillars Nano Lett. 21 4721–9

    [20] [20] Zhang W et al 2021 Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers Nat. Commun. 12 112

    [21] [21] Nielson R, Kaehr B and Shear J B 2009 Microreplication and design of biological architectures using dynamic-mask multiphoton lithography Small 5 120–5

    [22] [22] ZhangCC,ZhangJM,ChenRF, LiJW, WangCW, CaoR, Zhang J J, Ye H C, Zhai H and Sugioka K 2020 Rapid fabrication of high-resolution multi-scale microfluidic devices based on the scanning of patterned femtosecond laser Opt. Lett. 45 3929–32

    [23] [23] Ren H R, Fang X Y, Jang J, Bürger J, Rho J and Maier S A 2020 Complex-amplitude metasurface-based orbital angular momentum holography in momentum space Nat. Nanotechnol. 15 948–55

    [24] [24] SunLD et al 2020 3D-printed cellular tips for tuning fork atomic force microscopy in shear mode Nat. Commun. 11 5732

    [25] [25] Frenzel T, Kadic M and Wegener M 2017 Three-dimensional mechanical metamaterials with a twist Science 358 1072–4

    [26] [26] Saha S K, Wang D, Nguyen V H, Chang Y, Oakdale J S and Chen S-C 2019 Scalable submicrometer additive manufacturing Science 366 105–9

    [27] [27] Somers P, Liang Z H, Johnson J E, Boudouris B W, Pan L and Xu X F 2021 Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses Light Sci. Appl. 10 199

    [28] [28] Hahn V, Kiefer P, Frenzel T, Qu J Y, Blasco E, Barner-Kowollik C and Wegener M 2020 Rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials Adv. Funct. Mater. 30 1907795

    [29] [29] Wen XW et al 2021 3D-printed silica with nanoscale resolution Nat. Mater. 20 1506–11

    [30] [30] Kotz F, Quick A S, Risch P, Martin T, Hoose T, Thiel M, Helmer D and Rapp B E 2021 Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures Adv. Mater. 33 2006341

    [31] [31] Merkininkait. G, Aleksandravicius E, Malinauskas M, Gailevicius D and Sakirzanovas S 2022 Laser additive manufacturing of Si/ZrO2 tunable crystalline phase 3D nanostructures Opto-Electron. Adv. 5 210077

    [32] [32] LiuJW, LiuYC,DengCS,Yu KW, Fan XH,ZhangWG, Tao Y F, Hu HC, Deng L M and XiongW 2022 3D printing nano-architected semiconductors based on versatile and customizable metal-bound composite photoresins Adv. Mater. Technol. 7 2101230

    [33] [33] Fan XH,DengCS,GaoH,JiaoBZ,LiuYC,ChenFY, Deng L M and Xiong W 2022 3D printing of nanowrinkled architectures via laser direct assembly Sci. Adv. 8 eabn9942

    [34] [34] Long J et al 2020 Directional assembly of ZnO nanowires via three-dimensional laser direct writing Nano Lett. 20 5159–66

    [35] [35] Zhao Y Y, Ren X L, Zheng M L, Jin F, Liu J, Dong X Z, Zhao Z S and Duan X M 2021 Plasmon-enhanced nanosoldering of silver nanoparticles for high-conductive nanowires electrodes Opto-Electron. Adv. 4 200101

    [36] [36] Brown M K, Gong T J, Neal D R, Roller J P, Luanava S and Urey H 2001 Measurement of the dynamic deformation of a high-frequency scanning mirror using a Shack-Hartmann wavefront sensor Proc. SPIE 4451 480–8

    [37] [37] Brosens P J 1972 Dynamic mirror distortions in optical scanning Appl. Opt. 11 2987–9

    [38] [38] Akondi V, Kowalski B, Burns S A and Dubra A 2020 Dynamic distortion in resonant galvanometric optical scanners Optica 7 1506–13

    [39] [39] Akondi V, Kowalski B and Dubra A 2021 Dynamic wavefront distortion in resonant scanners Appl. Opt. 60 11189–95

    [40] [40] Kato J-I, Takeyasu N, Adachi Y, Sun H-B and Kawata S 2005 Multiple-spot parallel processing for laser micronanofabrication Appl. Phys. Lett. 86 044102

    [41] [41] Dong X-Z, Zhao Z-S and Duan X-M 2007 Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing Appl. Phys. Lett. 91 124103

    [42] [42] Yan W S, Cumming B P and Gu M 2015 High-throughput fabrication of micrometer-sized compound parabolic mirror arrays by using parallel laser direct-write processing J. Opt. 17 075803

    [43] [43] Zhang Z-Y, Zhang C-C, Hu Y-L, Wang C-W, Li J-W, Su Y-H, Chu J-R and Wu D 2016 Highly uniform parallel microfabrication using a large numerical aperture system Appl. Phys. Lett. 109 021109

    [44] [44] Yang L, El-Tamer A, Hinze U, Li J W, Hu Y L, Huang W H, Chu J R and Chichkov B N 2015 Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator Opt. Lasers Eng. 70 26–32

    [45] [45] Bruening S, Hennig G, Eifel S and Gillner A 2011 Ultrafast scan techniques for 3D-μm structuring of metal surfaces with high repetitive ps-laser pulses Phys. Proc. 12 105–15

    [46] [46] Franz D, H.fner T, Kunz T, Roth G-L, Rung S, Esen C and Hellmann R 2022 Characterization of a hybrid scanning system comprising acousto-optical deflectors and galvanometer scanners Appl. Phys. B 128 55

    [47] [47] Akemann W, Léger J-F, Ventalon C, Mathieu B, Dieudonné S and Bourdieu L 2015 Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy Opt. Express 23 28191–205

    [48] [48] Katona G, Szalay G, Maák P, Kaszás A, Veress M, Hillier D, Chiovini B, Vizi E S, Roska B and Rózsa B 2012 Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes Nat. Met. 9 201–8

    [49] [49] Wyant J C and Creath K 1992 Basic Wavefront Aberration Theory for Optical Metrology (Applied Optics and Optical Engineering Series vol XI) (New York: Academic)

    [50] [50] Geng Q, Wang D, Chen P F and Chen S-C 2019 Ultrafast multi-focus 3D nano-fabrication based on two-photon polymerization Nat. Commun. 10 2179

    [51] [51] Pearre B W, Michas C, Tsang J-M, Gardner T J and Otchy T M 2019 Fast micron-scale 3D printing with a resonant-scanning two-photon microscope Addit. Manuf. 30 100887

    [52] [52] Arnoux C, Pérez-Covarrubias L A, Khaldi A, Carlier Q, Baldeck P L, Heggarty K, Banyasz A and Monnereau C 2022 Understanding and overcoming proximity effects in multi-spot two-photon direct laser writing Addit. Manuf. 49 102491

    [53] [53] Montemayor L C, Meza L R and Greer J R 2014 Design and fabrication of hollow rigid nanolattices via two-photon lithography Adv. Eng. Mater. 16 184–9

    [54] [54] Kawata S, Sun H-B, Tanaka T and Takada K 2001 Finer features for functional microdevices Nature 412 697–8

    [55] [55] Oakdale J S et al 2017 Direct laser writing of low-density interdigitated foams for plasma drive shaping Adv. Funct. Mater. 27 1702425

    [56] [56] Gittard S D, Nguyen A, Obata K, Koroleva A, Narayan R J and Chichkov B N 2011 Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator Biomed. Opt. Express 2 3167–78

    [57] [57] Vizsnyiczai G, Kelemen L and Ormos P 2014 Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms Opt. Express 22 24217–23

    [58] [58] Zhang L R et al 2022 Functional shape-morphing microarchitectures fabricated by dynamic holographically shifted femtosecond multifoci Nano Lett. 22 5277–86

    [59] [59] Ren M D, Lu W P, Shao Q, Han F, Ouyang W Q, Zhang T Y, Wang C C L and Chen S C 2021 Aberration-free large-area stitch-free 3D nano-printing based on binary holography Opt. Express 29 44250–63

    [60] [60] Ouyang W Q, Xu X Y, Lu W P, Zhao N, Han F and Chen S-C 2023 Ultrafast 3D nanofabrication via digital holography Nat. Commun. 14 1716

    [61] [61] Dickson L D 1972 Optical considerations for an acoustooptic deflector Appl. Opt. 11 2196–202

    [62] [62] Yao S K and Young E H 1976 Two-hundred (200) MHZ bandwidth step-array acousto optic beam deflector Proc. SPIE 0090 23–27

    [63] [63] Kulakov S V, Kludzin V V, Gusev O B, Gabaraev O G, Nefedov V G and Molotok V V 1996 1-GHz bandwidth isotropic acousto-optic cell Proc. SPIE 2754 121–4

    [64] [64] Russbueldt P, Mans T, Rotarius G, Weitenberg J, Hoffmann H D and Poprawe R 2009 400 W Yb: YAG innoslab fs-amplifier Opt. Express 17 12230–45

    [65] [65] Russbueldt P, Mans T, Weitenberg J, Hoffmann H D and Poprawe R 2010 Compact diode-pumped 1.1 kW Yb: YAG innoslab femtosecond amplifier Opt. Lett. 35 4169–71

    [66] [66] Müller M, Aleshire C, Klenke A, Haddad E, Légaré F, Tünnermann A and Limpert J 2020 10.4 kW coherently combined ultrafast fiber laser Opt. Lett. 45 3083–6

    [67] [67] Goutzoulis A P 1994 Design and Fabrication of Acousto-optic Devices (New York: CRC Press) (https://doi.org/10.1201/ 9781003210221)

    [68] [68] Chen D H, Gu S Y and Chen S-C 2021 Study of optical modulation based on binary masks with finite pixels Opt. Lasers Eng. 142 106604

    [69] [69] Hu Q, Zhou Z, Lv X and Zeng S 2016 Compensation of spatial dispersion of an acousto-optic deflector with a special Keplerian telescope Opt. Lett. 41 207

    [70] [70] Deng M-J, Zhao Y-Y, Liang Z-X, Chen J-T, Zhang Y and Duan X-M 2022 Maximizing energy utilization in DMD-based projection lithography Opt. Express 30 4692–705

    Tools

    Get Citation

    Copy Citation Text

    Binzhang Jiao, Fayu Chen, Yuncheng Liu, Xuhao Fan, Shaoqun Zeng, Qi Dong, Leimin Deng, Hui Gao, and Wei Xiong. Acousto-optic scanning spatial-switching multiphoton lithography[J]. International Journal of Extreme Manufacturing, 2023, 5(3): 35008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Apr. 13, 2023

    Accepted: --

    Published Online: Jul. 26, 2024

    The Author Email: Gao Hui (gaohui_wnlo@hust.edu.cn)

    DOI:10.1088/2631-7990/ace0a7

    Topics