International Journal of Extreme Manufacturing, Volume. 5, Issue 1, 15004(2023)

Two-dimensional laser-induced periodic surface structures formed on crystalline silicon by GHz burst mode femtosecond laser pulses

[in Chinese]1...2, [in Chinese]1, [in Chinese]1, [in Chinese]2 and [in Chinese]1,* |Show fewer author(s)
Author Affiliations
  • 1RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
  • 2Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
  • show less
    References(56)

    [1] [1] Van Driel H M, Sipe J E and Young J F 1982 Laser-induced periodic surface structure on solids: a universal phenomenon Phys. Rev. Lett. 49 1955–8

    [2] [2] Nathala C S R, Ajami A, Ionin A A, Kudryashov S I, Makarov S V, Ganz T, Assion A and Husinsky W 2015 Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium Opt. Express 23 5915–29

    [3] [3] Gao Y F, Yu C Y, Han B, Ehrhardt M, Lorenz P, Xu L F and Zhu R H 2020 Picosecond laser-induced periodic surface structures (LIPSS) on crystalline silicon Surf. Interfaces 19 100538

    [4] [4] Wagner R and Gottmann J 2007 Sub-wavelength ripple formation on various materials induced by tightly focused femtosecond laser radiation J. Phys.: Conf. Ser. 59 333–7

    [5] [5] Borowiec A and Haugen H K 2003 Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses Appl. Phys. Lett. 82 4462–4

    [6] [6] Sakabe S, Hashida M, Tokita S, Namba S and Okamuro K 2009 Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse Phys. Rev. B 79 033409

    [7] [7] Shimotsuma Y, Kazansky P G, Qiu J R and Hirao K 2003 Self-organized nanogratings in glass irradiated by ultrashort light pulses Phys. Rev. Lett. 91 247405

    [8] [8] Reif J, Varlamova O and Costache F 2008 Femtosecond laser induced nanostructure formation: self-organization control parameters Appl. Phys. A 92 1019–24

    [9] [9] Hashida M, Nishii T, Miyasaka Y, Sakagami H, Shimizu M, Inoue S and Sakabe S 2016 Orientation of periodic grating structures controlled by double-pulse irradiation Appl. Phys. A 122 484

    [10] [10] Le Harzic R, Stracke F and Zimmermann H 2013 Formation mechanism of femtosecond laser-induced high spatial frequency ripples on semiconductors at low fluence and high repetition rate J. Appl. Phys. 113 183503

    [11] [11] Miyazaki K and Miyaji G 2013 Nanograting formation through surface plasmon fields induced by femtosecond laser pulses J. Appl. Phys. 114 153108

    [12] [12] Bonse J, Krüger J, H.hm S and Rosenfeld A 2012 Femtosecond laser-induced periodic surface structures J. Laser Appl. 24 042006

    [13] [13] Wang C, Huo H B, Johnson M, Shen M Y and Mazur E 2010 The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations Nanotechnology 21 075304

    [14] [14] Huang M, Zhao F L, Cheng Y, Xu N S and Xu Z Z 2009 Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser ACS Nano 3 4062–70

    [15] [15] Vorobyev A Y and Guo C L 2008 Colorizing metals with femtosecond laser pulses Appl. Phys. Lett. 92 041914

    [16] [16] Bonse J and Krüger J 2010 Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon J. Appl. Phys. 108 034903

    [17] [17] Mezera M, Van Drongelen M and R.mer G R B E 2018 Laser-induced periodic surface structures (LIPSS) on polymers processed with picosecond laser pulses J. Laser Micro Nanoeng. 13 105–16

    [18] [18] Castillejo M, Ezquerra T A, Martín M, Oujja M, Pérez S and Rebollar E 2012 Laser nanostructuring of polymers: ripples and applications AIP Conf. Proc. 1464 372–80

    [19] [19] Sugioka K 2017 Progress in ultrafast laser processing and future prospects Nanophotonics 6 393–413

    [20] [20] Florian C, Kirner S V, Krüger J and Bonse J 2020 Surface functionalization by laser-induced periodic surface structures J. Laser Appl. 32 022063

    [21] [21] Bonse J, Koter R, Hartelt M, Spaltmann D, Pentzien S, H.hm S, Rosenfeld A and Krüger J 2014 Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications Appl. Phys. A 117 103–10

    [22] [22] Vorobyev A Y and Guo C L 2011 Antireflection effect of femtosecond laser-induced periodic surface structures on silicon Opt. Express 19 A1031–6

    [23] [23] Varlamova O, Reif J, Stolz M, Borcia R, Borcia I D and Bestehorn M 2019 Wetting properties of LIPSS structured silicon surfaces Eur. Phys. J. B 92 91

    [24] [24] Bai S, Serien D, Ma Y, Obata K and Sugioka K 2020 Attomolar sensing based on liquid interface-assisted surface-enhanced Raman scattering in microfluidic chip by femtosecond laser processing ACS Appl. Mater. Interfaces 12 42328–38

    [25] [25] Levy Y, Derrien T J Y, Bulgakova N M, Gurevich E L and Mocek T 2016 Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors Appl. Surf. Sci. 374 157–64

    [26] [26] Gurevich E L 2016 Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation Appl. Surf. Sci. 374 56–60

    [27] [27] Fraggelakis F, Mincuzzi G, Lopez J, Manek-H.nninger I and Kling R 2019 Controlling 2D laser nano structuring over large area with double femtosecond pulses Appl. Surf. Sci. 470 677–86

    [28] [28] Reif J, Varlamova O, Uhlig S, Varlamov S and Bestehorn M 2014 On the physics of self-organized nanostructure formation upon femtosecond laser ablation Appl. Phys. A 117 179–84

    [29] [29] Varlamova O, Costache F, Reif J and Bestehorn M 2006 Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light Appl. Surf. Sci. 252 4702–6

    [30] [30] Varlamova O, Reif J, Varlamov S and Bestehorn M 2011 The laser polarization as control parameter in the formation of laser-induced periodic surface structures: comparison of numerical and experimental results Appl. Surf. Sci. 257 5465–9

    [31] [31] Dufft D, Rosenfeld A, Das S K, Grunwald R and Bonse J 2009 Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO J. Appl. Phys. 105 034908

    [32] [32] Le Harzic R, D.rr D, Sauer D, Stracke F and Zimmermann H 2011 Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation Appl. Phys. Lett. 98 211905

    [33] [33] Buividas R, Rosa L, .liupas R, Kudrius T, .lekys G, Datsyuk V and Juodkazis S 2011 Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback Nanotechnology 22 055304

    [34] [34] Miyaji G, Hagiya M and Miyazaki K 2017 Excitation of surface plasmon polaritons on silicon with an intense femtosecond laser pulse Phys. Rev. B 96 045122

    [35] [35] Kerse C et al 2016 Ablation-cooled material removal with ultrafast bursts of pulses Nature 537 84–88

    [36] [36] Sugioka K 2021 Will GHz burst mode create a new path to femtosecond laser processing? Int. J. Extrem. Manuf. 3 043001

    [37] [37] Cheng C W and Chen J K 2020 Ultrafast laser ablation of copper by GHz bursts Appl. Phys. A 126 649

    [38] [38] Butkus S, Jukna V, Paipulas D, Barkauskas M and Sirutkaitis V 2020 Micromachining of invar foils with GHz, MHz and kHz femtosecond burst modes Micromachines 11 733

    [39] [39] Bonamis G, Audouard E, H.nninger C, Lopez J, Mishchik K, Mottay E and Manek-Honninger I 2020 Systematic study of laser ablation with GHz bursts of femtosecond pulses Opt. Express 28 27702–14

    [40] [40] Mishchik K, Bonamis G, Qiao J, Lopez J, Audouard E, Mottay E, H.nninger C and Manek-H.nninger I 2019 High-efficiency femtosecond ablation of silicon with GHz repetition rate laser source Opt. Lett. 44 2193–6

    [41] [41] Caballero-Lucas F, Obata K and Sugioka K 2022 Enhanced ablation efficiency for silicon by femtosecond laser microprocessing with GHz bursts in MHz bursts(BiBurst) Int. J. Extrem. Manuf. 4 015103

    [42] [42] .emaitis A, Gaidys M, Gecˇys P, Barkauskas M and Gedvilas M 2021 Femtosecond laser ablation by bibursts in the MHz and GHz pulse repetition rates Opt. Express 29 7641–53

    [43] [43] Obata K, Caballero-Lucas F and Sugioka K 2021 Material processing at GHz burst mode by femtosecond laser ablation J. Laser Micro Nanoeng. 16 19–23

    [44] [44] Giannuzzi G, Gaudiuso C, Di Franco C, Scamarcio G, Lugar`a P M and Ancona A 2019 Large area laser-induced periodic surface structures on steel by bursts of femtosecond pulses with picosecond delays Opt. Lasers Eng. 114 15–21

    [45] [45] Liu J M 1982 Simple technique for measurements of pulsed Gaussian-beam spot sizes Opt. Lett. 7 196–8

    [46] [46] Green M A 2008 Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients Sol. Energy Mater. Sol. Cells 92 1305–10

    [47] [47] Schultze M et al 2014 Attosecond band-gap dynamics in silicon Science 346 1348–52

    [48] [48] Bazkir . 2009 Quantum efficiency determination of unbiased silicon photodiode and photodiode based trap detectors Rev. Adv. Mater. Sci. 21 90–98

    [49] [49] Markovic M I and Rakic A D 1990 Determination of the reflection coefficients of laser light of wavelengths λ.(0.22 μm, 200 μm) from the surface of aluminum using the Lorentz-Drude model Appl. Opt. 29 3479–83

    [50] [50] Contreras G, Sood A K, Cardona M and Compaan A 1984 Effect of free carriers on the Raman frequency of ultraheavily doped N-Si Solid State Commun. 49 303–5

    [51] [51] Hulin D, Combescot M, Bok J, Migus A, Vinet J Y and Antonetti A 1984 Energy transfer during silicon irradiation by femtosecond laser pulse Phys. Rev. Lett. 52 1998–2001

    [52] [52] De Laurentis M and Irace A 2014 Optical measurement techniques of recombination lifetime based on the free carriers absorption effect J. Solid State Phys. 2014 291469

    [53] [53] ZhangCY, Yao JW, LiuHY, DaiQF, Wu LJ,LanS, Trofimov V A and Lysak T M 2012 Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses Opt. Lett. 37 1106–8

    [54] [54] H.hm S, Rosenfeld A, Krüger J and Bonse J 2013 Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation Appl. Surf. Sci. 278 7–12

    [55] [55] H.hm S, Rohloff M, Rosenfeld A, Krüger J and Bonse J 2013 Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences Appl. Phys. A 110 553–7

    [56] [56] H.hm S, Herzlieb M, Rosenfeld A, Krüger J and Bonse J 2013 Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation Appl. Phys. Lett. 103 254101

    Tools

    Get Citation

    Copy Citation Text

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Two-dimensional laser-induced periodic surface structures formed on crystalline silicon by GHz burst mode femtosecond laser pulses[J]. International Journal of Extreme Manufacturing, 2023, 5(1): 15004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Apr. 21, 2022

    Accepted: --

    Published Online: Jul. 26, 2024

    The Author Email: (ksugioka@riken.jp)

    DOI:10.1088/2631-7990/acb133

    Topics