Electronics Optics & Control, Volume. 29, Issue 4, 106(2022)
PCB Defect Detection Based on Improved YOLO v3
[2] [2] GIRSHICK RDONAHUE JDARRELL Tet al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.ColumbusOH:IEEE2014:580-587.
[3] [3] GIRSHICK R.Fast R-CNN[C]//IEEE International Conference on Computer Vision.Santiago: IEEE2015:1440-1448.
[4] [4] REN S QHE K MGIRSHICK Ret al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence201739(6):1137-1149.
[5] [5] HU BWANG J H.Detection of PCB surface defects with improved Faster-RCNN and feature pyramid network[J].IEEE Access20208:108335-108345.
[6] [6] TSAI D MCHOU Y H.Fast and precise positioning in PCBs using deep neural network regression[J].IEEE Transactions on Instrumentation and Measurement2020 69(7):4692-4701.
[7] [7] LIU WANGUELOV DERHAN Det al.SSD:single shot multibox detector[C]//European Conference on Computer Vision.Cham:Springer2016:21-37.
[8] [8] REDMON JDIVVALA SGIRSHICK Ret al.You only look once:unifiedreal time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Las VegasNV:IEEE2016:779-788.
[9] [9] REDMON JFARHADI A.YOLO9000:betterfasterstronger[C]//IEEE Conference on Computer Vision and Pattern Recognition.HonoluluHI:IEEE2017:6517-6525.
[10] [10] REDMON JFARHADI A.YOLOv3:an incremental improvement[EB/OL].(2018-04-08)[2021-04-15].https://arxiv.org/abs/1804.02767.
[11] [11] BOCHKOVSKIY AWANG C YLIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2021-04-15].https://arxiv.org/abs/2004.10934v1.
[13] [13] LI Y TKUO PGUO J I.Automatic industry PCB board DIP process defect detection with deep ensemble method[C]//IEEE 29th International Symposium on Industrial Electronics (ISIE).Delft:IEEE,2020:453-459.
[14] [14] SULAIMAN S NISA N A M.Adaptive fuzzy-K-means clustering algorithm for image segmentation[J].IEEE Transactions on Consumer Electronics201056(4):2661-2668.
[16] [16] HU JSHEN LSUN G.Squeeze-and-excitation networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake CityUT:IEEE2018:7132-7141.
Get Citation
Copy Citation Text
LI Wen, LI Xiaochun, YAN Haolei. PCB Defect Detection Based on Improved YOLO v3[J]. Electronics Optics & Control, 2022, 29(4): 106
Category:
Received: Apr. 15, 2021
Accepted: --
Published Online: Apr. 22, 2022
The Author Email: