Optics and Precision Engineering, Volume. 30, Issue 15, 1889(2022)

Semi-supervised dual path network for hyperspectral image classification

Hong HUANG1,*... Zhen ZHANG1, Ling JI2 and Zhengying LI1 |Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Optoelectronic Technology and System, Ministry of Education, Chongqing University, Chongqing400044, China
  • 2The 34th Research Institute of China Electronics Technology Group Corporation, Guilin541004, China
  • show less
    Figures & Tables(12)
    Flow chart of SSDPNet algorithm
    False color map and color marked real feature map of Heihe dataset
    False color map and color marked real feature map of LongKou dataset
    Experimental results of different unlabeled sample numbers on Heihe data set
    Classification results of each algorithm on Heihe data set
    Classification results of each algorithm on Longkou data set
    • Table 1. Classification results with different methods on Heihe data set(overall accuracy ± Std)

      View table
      View in Article

      Table 1. Classification results with different methods on Heihe data set(overall accuracy ± Std)

      Algorithmni=5ni=10ni=20ni=30ni =40ni =50
      RAW79.39±4.3682.50±1.6586.62±1.8187.13±1.1388.18±1.0888.71±0.83
      PCA79.39±4.3682.50±1.6586.62±1.8187.13±1.1388.18±1.0888.71±0.83
      NPE70.29±6.7572.37±4.7281.01±2.3380.37±2.0386.64±1.2588.63±1.16
      LDA68.93±5.0273.09±5.0476.89±3.7989.41±1.0591.81±0.8892.79±0.96
      MFA79.48±4.8083.63±2.2290.99±1.1891.44±1.2192.04±0.9092.10±1.20
      LGSFA69.59±4.3274.94±8.3070.20±4.2290.22±0.9591.20±1.2193.14±0.90
      SDA84.63±2.5588.89±1.3891.56±2.6491.84±1.3592.45±1.0392.88±1.53
      SELD81.08±3.6286.78±2.3569.68±4.5289.40±0.8491.83±0.9092.54±1.01
      SCGSP80.40±3.2986.87±1.7865.45±6.7487.20±1.7090.13±1.5392.19±0.98
      S3MDA79.60±5.5984.36±1.5087.70±1.5789.08±1.8688.38±3.0790.05±1.40
      1DCNN79.65±2.5684.89±2.4985.30±2.0886.99±2.2889.67±1.4090.28±2.19
      2DCNN79.99±3.7785.77±3.8085.77±1.7887.00±3.4789.15±1.8893.37±0.74
      3DCNN83.97±3.2188.98±2.2192.96±1.9093.37±2.3294.47±2.4695.46±0.88
      DMRBN81.10±4.2287.80±1.1488.49±2.7189.68±1.7591.24±0.7391.88±0.94
      DLPNet81.19±3.6586.80±1.3988.36±2.4889.71±1.5690.95±0.6891.85±0.56
      SSDPNet88.69±3.6093.24±0.8294.33±0.4395.23±1.4695.96±0.7496.79±0.79
    • Table 2. Ablation experimental results on Heihe dataset (overall classification accuracy ± standard deviation)

      View table
      View in Article

      Table 2. Ablation experimental results on Heihe dataset (overall classification accuracy ± standard deviation)

      Algorithm5 samples per class50 samples per class
      OA/%KCOA/%KC
      2DCNN81.28±4.060.749±0.05190.43±1.990.870±0.027
      2DCNN+SSGragh86.78±1.720.817±0.02491.04±2.380.877±0.032
      NN83.80±3.270.784±0.04292.99±0.930.904±1.22
      NN+SSGragh86.76±2.050.820±0.02893.65±0.970.913±1.34
      SSDPNet89.90±1.780.862±0.02494.02±0.630.918±0.009
    • Table 3. Classification results of each class samples via different methods on Heihe data set

      View table
      View in Article

      Table 3. Classification results of each class samples via different methods on Heihe data set

      ClassRawPCANPELDAMFALGSFA1DCNN2DCNN
      190.24±1.3890.07±1.5588.68±1.2378.26±4.6693.49±1.6987.88±2.6587.19±4.8997.75±0.74
      281.73±4.6781.54±4.7774.49±10.2184.05±5.2393.96±1.5877.95±6.6484.30±13.896.83±2.18
      387.00±2.5686.61±2.6086.10±3.2570.26±5.4190.26±2.4768.53±5.5380.73±7.1989.57±3.56
      469.78±4.5768.88±4.6456.19±6.2961.62±9.6282.65±3.6143.12±11.7375.06±9.7582.94±6.11
      584.76±4.1384.61±4.1375.44±6.5650.97±6.2183.95±6.6324.50±6.2762.23±15.4587.11±4.02
      690.93±2.3890.89±2.4490.59±1.6574.58±7.0493.26±1.2166.93±10.7417.34±33.6256.94±20.8
      774.31±6.0973.89±6.0467.35±7.0055.42±8.0379.06±6.0839.04±6.8510.31±21.7546.30±20.69
      892.26±3.1592.10±3.1387.32±4.3289.92±3.9196.48±1.7387.03±4.9734.07±32.9176.69±25.33
      OA87.81±1.1687.58±1.2685.40±0.3374.25±3.8691.80±1.2973.46±4.1682.53±6.5290.32±1.32
      AA83.87±1.5083.58±1.5578.27±2.0170.64±3.2789.14±1.2661.87±2.8856.40±6.7379.27±5.34
      KC0.83±0.020.83±0.020.80±0.010.66±0.050.88±0.020.64±0.050.75±0.100.91±0.02
      Class3DCNNDLPNetDMRBNSDASELDSCGSPS3MDASSDPNet
      195.17±4.0291.26±2.5692.04±1.9994.08±1.7472.66±5.0274.82±3.1091.35±1.6295.87±0.91
      299.02±1.0390.68±4.3692.56±3.8196.74±1.0573.47±8.9364.68±12.7890.22±4.7494.14±2.03
      385.01±17.4489.14±2.6288.94±2.3690.47±2.6143.29±9.8356.33±8.7488.07±2.3393.78±1.55
      492.18±5.5684.48±5.1985.32±4.9984.62±3.2740.08±8.3350.01±6.9576.64±4.2685.03±5.98
      587.85±10.2486.12±5.2388.02±4.0186.26±4.9229.34±4.9739.15±7.8786.42±5.1689.07±2.69
      657.66±30.8089.68±4.3690.38±3.7895.16±1.9867.57±9.7247.13±11.0394.34±1.1993.76±3.43
      713.75±21.2880.73±4.1872.09±25.5280.73±7.3537.83±7.8435.29±3.6577.25±7.9681.98±6.17
      853.20±38.1089.60±4.8592.05±3.4696.76±1.9482.07±6.5076.68±6.7694.89±1.9392.24±2.65
      OA90.74±8.1989.71±2.3290.30±1.7992.91±0.6362.76±5.4660.71±3.4090.44±1.1293.75±1.00
      AA72.98±10.2087.71±2.3288.81±1.3490.60±1.0255.79±5.0055.51±3.7787.65±2.1590.73±1.30
      KC0.87±11.140.86±0.030.87±0.020.90±0.010.51±0.070.49±0.040.87±0.020.92±0.01
    • Table 4. Classification results with different methods on LongKou data set(overall accuracy±std)

      View table
      View in Article

      Table 4. Classification results with different methods on LongKou data set(overall accuracy±std)

      Algorithmni=5ni=10ni=20ni=30ni =40ni =50
      RAW73.51±3.0575.52±2.0679.75±1.6580.71±1.4982.37±0.9483.20±0.92
      PCA73.51±3.0575.52±2.0679.75±1.6580.70±1.4982.37±0.9483.20±0.92
      NPE74.09±4.8774.18±4.0874.37±3.2179.22±1.5874.44±1.8279.52±1.25
      LDA80.20±2.3876.89±3.7976.29±3.0256.27±3.0277.30±1.5088.47±0.77
      MFA85.48±4.9183.25±2.2288.09±0.8889.25±1.8790.84±1.0790.90±1.07
      LGSFA74.11±4.8276.53±3.9570.12±1.6736.31±9.2179.55±1.5785.29±1.44
      SDA82.84±3.8988.89±1.3891.49±1.3292.15±0.7893.57±0.9494.36±0.50
      SELD86.17±2.1086.78±2.3686.42±1.9787.35±1.5189.14±1.0591.18±0.72
      SCGSP80.53±3.6386.87±1.7889.91±1.5491.71±0.8092.83±1.0193.82±0.80
      S3MDA82.84±3.8984.35±1.5086.24±1.7787.81±1.5488.47±2.8090.34±1.06
      1DCNN82.20±7.4383.14±7.9687.10±1.7789.44±2.8291.84±1.0893.82±1.21
      2DCNN83.14±5.1187.03±3.5588.05±2.8290.85±2.0992.44±3.5894.33±2.85
      3DCNN84.66±5.5087.05±2.4888.37±1.5691.45±1.4793.62±1.4795.94±0.97
      DMRBN81.56±4.5087.80±1.1490.73±1.2791.99±0.7793.45±1.3494.46±0.51
      DLPNet83.99±2.5386.80±1.3990.68±1.2991.60±1.3393.19±0.8594.40±0.59
      SSDPNet90.56±1.7093.24±0.8295.62±0.5896.06±0.9396.67±1.2397.53±0.60
    • Table 5. Ablation experimental results on Longkou data set

      View table
      View in Article

      Table 5. Ablation experimental results on Longkou data set

      Algorithm5 samples per class50 samples per class
      OA/%KappaOA/%Kappa
      2DCNN82.74±9.010.783±0.10693.64±0.290.918±0.135
      2DCNN+SSGragh87.98±6.200.845±0.07695.13±0.130.937±0.243
      NN80.30±7.470.751±0.08994.37±0.420.927±0.533
      NN+SSGragh82.55±3.580.779±0.04394.41±0.160.927±0.206
      SSDPNet89.53±1.960.864±0.02596.05±0.420.946±0.496
    • Table 6. Classification results of each class samples via different methods on Heihe data set

      View table
      View in Article

      Table 6. Classification results of each class samples via different methods on Heihe data set

      ClassRawPCANPELDAMFALGSFA1DCNN2DCNN
      188.11±1.8987.99±1.9454.81±8.3537.96±7.0196.47±2.3935.41±5.7395.01±4.6990.22±5.08
      242.32±5.1142.11±5.1425.27±10.4928.71±7.2964.00±7.4615.52±1.9423.46±21.5059.39±30.68
      352.74±6.2852.41±6.2231.35±9.6536.97±8.1979.16±6.1326.76±7.0945.53±34.7962.99±32.21
      480.92±2.4480.93±2.4060.62±6.2725.07±5.6189.47±3.4539.18±5.1890.12±2.8092.40±2.76
      558.49±7.0257.89±6.9429.62±11.5925.76±4.6974.28±6.9614.56±2.898.07±11.1854.58±22.66
      686.27±6.7786.02±6.8541.87±8.9146.76±7.6395.74±3.2540.42±8.1196.37±0.9495.26±7.13
      799.94±0.0599.94±0.0598.17±1.9654.74±9.3399.92±0.0778.66±7.7998.82±0.8199.05±0.58
      877.59±3.6077.48±3.4236.31±13.9433.08±7.2582.83±5.0022.11±5.3867.22±28.1569.61±15.10
      939.30±4.7138.96±4.7518.89±4.8838.76±8.8074.76±3.5021.88±4.5478.21±36.4881.74±7.75
      OA85.05±0.5884.98±0.5965.45±4.4339.20±4.1592.33±1.0048.88±3.9687.39±1.3190.92±1.97
      AA69.51±1.5269.30±1.5344.10±5.9036.42±1.9584.07±1.0332.71±1.9866.98±6.4478.36±9.43
      KC0.80±0.010.81±0.010.57±0.050.29±0.040.90±0.010.35±0.050.83±0.020.88±0.03
      Class3DCNNDLPNetDMRBNSDASELDSCGSPS3MDASSDPNet
      193.97±8.5695.23±1.9495.45±1.9096.87±1.0194.54±1.8196.35±1.1494.20±3.1298.86±0.54
      251.82±23.8373.88±5.7872.91±7.8265.19±6.1160.82±5.2061.57±8.3157.17±10.4780.60±6.97
      345.07±39.1585.62±4.3684.85±4.8485.14±2.4682.01±3.2374.04±4.2981.20±4.6693.22±3.36
      492.21±4.0090.28±1.6690.31±1.7093.91±1.6988.40±1.9089.51±2.3489.30±1.8396.15±2.16
      551.39±36.3386.42±4.5875.42±27.2469.58±7.8463.09±4.4475.30±4.0175.15±8.2988.57±4.89
      675.90±38.7790.29±5.0591.52±6.1896.74±3.5496.29±2.9095.79±4.5892.52±4.3892.85±7.57
      799.31±0.3099.78±0.2399.95±0.0499.92±0.0599.91±0.0699.95±0.0499.90±0.1399.98±0.02
      885.90±16.7482.53±6.5982.18±5.6186.69±3.1176.03±6.2482.03±3.8572.32±4.2186.76±5.05
      987.27±13.6377.53±6.5975.00±5.8277.89±3.8475.69±3.5872.05±4.2669.18±6.5580.04±7.49
      OA90.63±2.8592.81±0.5392.64±0.5494.08±0.5391.18±0.7992.09±0.7091.21±1.1796.10±0.84
      AA75.94±4.8686.82±0.5386.28±1.8085.77±1.6881.86±1.1182.96±1.7481.99±2.5890.78±1.48
      KC0.88±0.040.87±0.010.88±0.010.90±0.010.88±0.010.89±0.010.88±0.020.95±0.01
    Tools

    Get Citation

    Copy Citation Text

    Hong HUANG, Zhen ZHANG, Ling JI, Zhengying LI. Semi-supervised dual path network for hyperspectral image classification[J]. Optics and Precision Engineering, 2022, 30(15): 1889

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: May. 7, 2022

    Accepted: --

    Published Online: Sep. 7, 2022

    The Author Email: Hong HUANG (hhuang@cqu.edu.cn)

    DOI:10.37188/OPE.20223015.1889

    Topics