Optics and Precision Engineering, Volume. 30, Issue 15, 1889(2022)
Semi-supervised dual path network for hyperspectral image classification
[1] Y DING, X F ZHAO, Z L ZHANG et al. Multiscale graph sample and aggregate network with context-aware learning for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 4561-4572(2021).
[2] [2] 2郑铁, 薛长斌, 宋金伟. 利用格型递归最小二乘滤波器组的高光谱图像压缩[J]. 光学 精密工程, 2021, 29(4): 896-905. doi: 10.37188/OPE.20212904.0896ZHENGT, XUEC B, SONGJ W. Lossless compression of hyperspectral images using recursive least square lattice filter group[J]. Optics and Precision Engineering, 2021, 29(4): 896-905.(in Chinese). doi: 10.37188/OPE.20212904.0896
[3] [3] 3叶珍, 白璘, 何明一. 高光谱图像空谱特征提取综述[J]. 中国图象图形学报, 2021, 26(8): 1737-1763. doi: 10.11834/jig.210198YEZH, BAIL, HEM Y. Review of spatial-spectral feature extraction for hyperspectral image[J]. Journal of Image and Graphics, 2021, 26(8): 1737-1763.(in Chinese). doi: 10.11834/jig.210198
[4] C H MU, Q Z ZENG, Y LIU et al. A two-branch network combined with robust principal component analysis for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 18, 2147-2151(2021).
[5] A SAMAT, P GAMBA, S C LIU et al. Jointly informative and manifold structure representative sampling based active learning for remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 54, 6803-6817(2016).
[6] H WANG, Y Y FAN, B F FANG et al. Generalized linear discriminant analysis based on euclidean norm for gait recognition. International Journal of Machine Learning and Cybernetics, 9, 569-576(2018).
[7] D XU, S C YAN, D C TAO et al. Marginal Fisher analysis and its variants for human gait recognition and content- based image retrieval. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 16, 2811-2821(2007).
[8] F L LUO, H HUANG, Y L DUAN et al. Local geometric structure feature for dimensionality reduction of hyperspectral imagery. Remote Sensing, 9, 6197-6211(2017).
[9] [9] 9谭琨, 王雪, 杜培军. 结合深度学习和半监督学习的遥感影像分类进展[J]. 中国图象图形学报, 2019, 24(11): 1823-1841. doi: 10.11834/jig.190348TANK, WANGX, DUP J. Research progress of the remote sensing classification combining deep learning and semi-supervised learning[J]. Journal of Image and Graphics, 2019, 24(11): 1823-1841.(in Chinese). doi: 10.11834/jig.190348
[10] D CAI, X F HE, J W HAN. Semi-supervised discriminant analysis, 14, 222-228(2007).
[11] W Z LIAO, A PIŽURICA, P SCHEUNDERS et al. Semisupervised local discriminant analysis for feature extraction in hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 51, 184-198(2013).
[12] S Y YANG, P L JIN, B LI et al. Semisupervised dual-geometric subspace projection for dimensionality reduction of hyperspectral image data. IEEE Transactions on Geoscience and Remote Sensing, 52, 3587-3593(2014).
[13] F L LUO, H HUANG, Z Z MA et al. Semisupervised sparse manifold discriminative analysis for feature extraction of hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 54, 6197-6211(2016).
[14] Z H XUE, P J DU, J LI et al. Simultaneous sparse graph embedding for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 53, 6114-6133(2015).
[15] [15] 15闫敬文, 陈宏达, 刘蕾. 高光谱图像分类的研究进展[J]. 光学 精密工程, 2019, 27(3): 680-693. doi: 10.3788/ope.20192703.0680YANJ W, CHENH D, LIUL. Overview of hyperspectral image classification[J]. Optics and Precision Engineering, 2019, 27(3): 680-693.(in Chinese). doi: 10.3788/ope.20192703.0680
[16] Y LI, H K ZHANG, Q SHEN. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sensing, 9, 67(2017).
[17] Z Y LI, H HUANG, Y L DUAN et al. DLPNet: a deep manifold network for feature extraction of hyperspectral imagery. Neural Networks, 129, 7-18(2020).
[18] [18] 18黄鸿, 张臻, 李政英. 面向高光谱影像分类的深度流形重构置信网络[J]. 光学 精密工程, 2021, 29(8): 1985-1998. doi: 10.37188/OPE.20212908.1985HUANGH, ZHANGZH, LIZH Y. Deep manifold reconstruction belief network for hyperspectral remote sensing image classification[J]. Optics and Precision Engineering, 2021, 29(8): 1985-1998.(in Chinese). doi: 10.37188/OPE.20212908.1985
[19] [19] 19李丹, 孔繁锵, 朱德燕. 基于局部高斯混合特征提取的高光谱图像分类[J]. 光学学报, 2021, 41(6): 0610001. doi: 10.3788/aos202141.0610001LID, KONGF Q, ZHUD Y. Hyperspectral image classification based on local Gaussian mixture feature extraction[J]. Acta Optica Sinica, 2021, 41(6): 0610001.(in Chinese). doi: 10.3788/aos202141.0610001
[20] [20] 20肖青,闻建光.黑河生态水文遥感试验: 热红外高光谱航空遥感(2012年7月4日)[Z].黑河计划数据管理中心, 2013. doi: 10.3972/hiwater.006. 2013. db. doi: 10.1088/1475-7516/2013/10/006XIAO Q, WEN J G. HiWATER: Thermal-infrared hyperspectal radiometer(4th,July,2012) [Z].Heihe Plan Science Data Center, 2013. doi: 10.3972/hiwater.006. 2013. db. (in Chinese). doi: 10.1088/1475-7516/2013/10/006
[21] Y F ZHONG, X HU, C LUO et al. WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF. Remote Sensing of Environment, 250, 112012(2020).
Get Citation
Copy Citation Text
Hong HUANG, Zhen ZHANG, Ling JI, Zhengying LI. Semi-supervised dual path network for hyperspectral image classification[J]. Optics and Precision Engineering, 2022, 30(15): 1889
Category: Information Sciences
Received: May. 7, 2022
Accepted: --
Published Online: Sep. 7, 2022
The Author Email: HUANG Hong (hhuang@cqu.edu.cn)