[6] T.Arai, K.Hiraga, Y.Ito, M.Kimura, T.Mikouchi, M.Miyahara, E.Ohtani, S.Ozawa, K.Sato. Coesite and stishovite in a shocked lunar meteorite, Asuka-881757, and impact events in lunar surface. Proc. Natl. Acad. Sci. U. S. A., 108, 463(2011).
[8] U.B?ttger, V. A.Fernandes, L.Ferrière, J.Fritz, A.Greshake, M.Klementova, L.Palatinus, R. G.Tr?nnes, R.Wirth. Donwilhelmsite, [CaAl4Si2O11], a new lunar high-pressure Ca-Al-silicate with relevance for subducted terrestrial sediments. Am. Mineral., 105, 1704(2020).
[9] L.Gu, B. A.Hofmann, S.Hu, Y.Lin, T.Sekine, L.Xiao, W.Xing, C.Zhang, M.Zhang. Discovery of reidite in the lunar meteorite Sayh al Uhaymir 169. Geophys. Res. Lett., 47, e2020GL089583(2020).
[17] N. Z.Boctor, M.Chen, P.Dera, L.Dubrovinsky, A.El Goresy, R. J.Hemley, C. T.Prewitt, T. G.Sharp, B.Wopenka. Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. Eur. J. Mineral., 20, 523(2008).
[20] J. R.Beckett, C.Ma, O.Tschauner. A new high pressure calcium aluminosilicate (CaAl2Si3.5O11) in Martian meteorites: Another after-life for plagioclase and connections to the CAS phase.
[21] J. R.Beckett, C.Ma, O.Tschauner. A closer look at Martian meteorites: Discovery of the new mineral zagamiite, CaAl2Si3.5O11, a shock-metamorphic, high-pressure, calcium aluminosilicate.
[22] H. A.Bechtel, J. R.Beckett, C.Ma, A.MacDowell, V. B.Prakapenka, C.Prescher, G. R.Rossman, O.Tschauner. Liebermannite, KAlSi3O8, a new shock-metamorphic, high-pressure mineral from the Zagami Martian meteorite. Meteorit. Planet. Sci., 53, 50(2018).
[34] M.Chen, K.Di, J.Duan, J.Kong, B.Liu, Z.Liu, M.Peng, Z.Rong, W.Wan, J.Wang, Y.Wang, J.Xie, Y.Zhang. Localization of the Chang’e-5 lander using radio-tracking and image-based methods. Remote Sens., 13, 590(2021).
[36] X.Deng, H.Hu, C.Li, B.Liu, D.Liu, J.Liu, Z.Ouyang, Z.-Y.Pei, X.Ren, Y.Su, Q.Wang, W.Wen, C.Xiao, D.Xue, M.-F.Yang, Y.Yao, X.Zeng, G.Zhang, H.Zhang, Q.Zhou, W.Zuo. Characteristics of the lunar samples returned by the Chang’E-5 mission. Natl. Sci. Rev., 9, nwab188(2022).
[37] Z.Bao, G.Benedix, X.Che, C.Crow, R.Fan, J.Head, B.Jolliff, F.Jourdan, K. H.Joy, D.Li, Z.Li, D.Liu, J.Liu, T.Long, C. R.Neal, A.Nemchin, M. D.Norman, J. F.Snape, R.Tartese, C.Wang, S. G.Webb, M. J.Whitehouse, S.Xie, C.Yang, Z.Yang. Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5. Science, 374, 887(2021).
[38] S.Guo, C.Li, J.Li, J.-H.Li, Q.-L.Li, X.-H.Li, Y.Lin, Y.Liu, H.-X.Ma, Z.Ouyang, G.-Q.Tang, X.Tang, F.-Y.Wu, Z.Xiao, J.-Y.Yuan, Q.Zhou. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature, 600, 54(2021).
[39] S.Boschi, J.Chen, Y.Guan, H.Hu, H.Hui, W.Li, X.-L.Wang, Z.Yin, W.Zhang. Compositional variability of 2.0-Ga lunar basalts at the Chang’e-5 landing site. J. Geophys. Res.: Planets, 128, e2022JE007627(2023).
[40] X.Che, C.Crow, J. W.Head, K. H.Joy, D.Liu, S.Liu, T.Long, K.Miljkovic, C. R.Neal, A.Nemchin, M. D.Norman, Y.Qian, J. F.Snape, R.Tartèse, C.Wang, M.Whitehouse, L.Xiao, S.Xie, C.Yang, Z.Yang, X.Yu, N.Zellner, G.Zhou. Constraining the formation and transport of lunar impact glasses using the ages and chemical compositions of Chang’e-5 glass beads. Sci. Adv., 8, eabq2542(2022).
[41] Y.Chen, S.Hu, H.Hui, Q.-L.Li, X.-H.Li, Y.Lin, H.-X.Ma, H.-C.Tian, H.Wang, F.-Y.Wu, S.-T.Wu, Z.Xiao, W.Yang, C.Zhang, D.Zhang, Q.Zhou. Geochemistry of impact glasses in the Chang’e-5 regolith: Constraints on impact melting and the petrogenesis of local basalt. Geochim. Cosmochim. Acta, 335, 183(2022).
[42] H.Becker, K.Cao, Q.He, T.He, Z.Hu, J.Li, Y.Li, Y.Liu, Z.She, Z.Wang, X.Wu, L.Xiao, W.Zhang, K.Zong. Bulk compositions of the Chang’E-5 lunar soil: Insights into chemical homogeneity, exotic addition, and origin of landing site basalts. Geochim. Cosmochim. Acta, 335, 284(2022).
[44] E.Bobocioiu, E.Bykova, R.Caracas, A.?ernok, L. S.Dubrovinsky, G.Habler, M.Hanfland, H.-P.Liermann, K.Marquardt, M.Mezouar. Compressional pathways of α-cristobalite, structure of cristobalite X-I, and towards the understanding of seifertite formation. Nat. Commun., 8, 15647(2017).
[46] S.Althoff, R.Bugiolacchi, Q.He, J. W.Head, Y.Qian, T.Wilhelm, C.W?hler, L.Xiao, B.Ye, Y.Yuan, S.Zhao. Copernican-aged (<200 Ma) impact ejecta at the Chang’e-5 landing site: Statistical evidence from crater morphology, morphometry, and degradation models. Geophys. Res. Lett., 48, e2021GL095341(2021).
[47] Q.He, J. W.Head, H.Hiesinger, J.Huang, Y.Kang, X.Lai, Y.Pang, Y.Qian, C. H.van der Bogert, G.Wang, J.Wang, Q.Wang, L.Xiao, R.Yang, Y.Yuan, N.Zhang, J.Zhao, S.Zhao. China’s Chang’e-5 landing site: Geology, stratigraphy, and provenance of materials. Earth Planet. Sci. Lett., 561, 116855(2021).
[48] R.Chang, Y.Chen, C.Huang, L.-H.Jia, X.-G.Li, H.-L.Lin, H.-C.Tian, H.Wang, F.-Y.Wu, S.-T.Wu, L.-W.Xie, L.Xu, S.-H.Yang, W.Yang, Y.-H.Yang, C.Zhang, D.Zhang, D.-P.Zhang, G.-L.Zhang, Q.Zhou. Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane. Nature, 600, 59(2021).
[49] L.Jia, X.Li, Y.Lin, H.-C.Tian, F.Wu, S.Wu, W.Yang, D.Zhang, H.Zhang. Petrogenesis of Chang’E-5 mare basalts: Clues from the trace elements in plagioclase. Am. Mineral., 108, 1669(2023).
[50] I.Baziotis, J. M. D.Day, Q.He, Z.Hu, Y.Li, B.Luo, C. R.Neal, F.Pan, Y.Qian, Z.She, L.Wang, Z.Wang, X.Wu, L.Xiao, W.Zhang, K.Zong. Detailed petrogenesis of the unsampled Oceanus Procellarum: The case of the Chang’e-5 mare basalts. Icarus, 383, 115082(2022).
[59] C. R.Neal, G. J.Taylor, R.Neal C., J.Taylor G., L. A.Taylor, P. H.Warren. Lunar granite petrogenesis and the process of silicate liquid immiscibility: The barium problem. Workshop on Moon in Transition: Apollo 14 KREEP, and Evolved Lunar Rocks, 89(1989).
[60] C. R.Neal, L. A.Taylor. The nature of barium partitioning between immiscible melts: A comparison of experimental and natural systems with reference to lunar granite petrogenesis, 209(1989).
[62] B.Charlier, B.Charlier, I. V.Veksler, B.Charlier, O.Namur, R.Latypov, C.Tegner and, O.Namur, B.Charlier, O.Namur, R.Latypov, C.Tegner and, R.Latypov, B.Charlier, O.Namur, R.Latypov, C.Tegner and, C.Tegner. Layered Intrusions, 229(2015).
[64] G. H.Daniel, P. C.Hess, M. J.Rutherford. Experimental liquid line of descent and liquid immiscibility for basalt 70017, 1, 569(1974).
[65] R. N.Guillemette, P. C.Hess, M. J.Rutherford, F. J.Ryerson, H. A.Tuchfeld. Residual products of fractional crystallization of lunar magmas: An experimental study, 895(1975).
[67] H. J.Melosh. Impact Cratering: A Geologic Process(1989).
[69] C. C.Allen, J. L.Bandfield, N.Bowles, R. C.Elphic, T. D.Glotch, B. T.Greenhagen, K. D.Hanna, P. G.Lucey, D. A.Paige, I. R.Thomas, M. B.Wyatt. Highly silicic compositions on the Moon. Science, 329, 1510(2010).
[71] J. T.Cahill, T. D.Glotch, B. T.Greenhagen, E. R.Jawin, N.Kumari, D. J.Lawrence, S.Li, P. G.Lucey, D. P.Moriarty, R. N.Watkinset?al.. The scientific value of a sustained exploration program at the Aristarchus plateau. Planet. Sci. J., 2, 136(2021).
[73] L.Bindi, C.Ma, O.Tschauner, and L.Bindi, G.Cruciani. Discovering high-pressure and high-temperature minerals. Celebrating the International Year of Mineralogy: Progress and Landmark Discoveries of the Last Decades, 169(2023).