Laser & Optoelectronics Progress, Volume. 58, Issue 18, 1811008(2021)

Research Progress of Computational Microscopy Imaging Based on Point Spread Function Engineering

Xin Liu1, Cuifang Kuang1,2, Xu Liu1,2, and Xiang Hao1、*
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • 2Research Center for Intelligent Sensing, Zhejiang Laboratory, Hangzhou, Zhejiang 311100, China
  • show less
    References(73)

    [1] Abbe E. Beiträge zur theorie des Mikroskops und der Mikroskopischen wahrnehmung[J]. Archiv Für Mikroskopische Anatomie, 9, 413-468(1873).

    [2] Goodman J W. Introduction to Fourier optics[M](2005).

    [3] Airy G B. On the diffraction of an object-glass with circular aperture[J]. Transactions of the Cambridge Philosophical Society, 5, 283(1835).

    [4] Mansfield S M, Kino G S. Solid immersion microscope[J]. Applied Physics Letters, 57, 2615-2616(1990).

    [5] Hell S, Stelzer E H K. Properties of a 4Pi confocal fluorescence microscope[J]. Journal of the Optical Society of America A, 9, 2159-2166(1992).

    [6] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [7] Blom H, Widengren J. Stimulated emission depletion microscopy[J]. Chemical Reviews, 117, 7377-7427(2017).

    [8] Dickson R M, Cubitt A B, Tsien R Y et al. On/off blinking and switching behaviour of single molecules of green fluorescent protein[J]. Nature, 388, 355-358(1997).

    [9] Betzig E. Proposed method for molecular optical imaging[J]. Optics Letters, 20, 237-239(1995).

    [11] Möckl L, Lamb D C, Bräuchle C. Super-resolved fluorescence microscopy: Nobel Prize in chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner[J]. Angewandte Chemie International Edition, 53, 13972-13977(2014).

    [12] Richards B, Wolf E. Electromagnetic diffraction in optical systems, II. structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 253, 358-379(1959).

    [13] Gu M. Advanced optical imaging theory[M](2000).

    [14] Hao X, Kuang C F, Wang T T et al. Effects of polarization on the de-excitation dark focal spot in STED microscopy[J]. Journal of Optics, 12, 115707(2010).

    [15] Török P, Varga P. Electromagnetic diffraction of light focused through a stratified medium[J]. Applied Optics, 36, 2305-2312(1997).

    [16] Born M, Wolf E, Bhatia A B et al. Principles of optics[M]. 7th ed(1999).

    [17] Ashkin A, Dziedzic J M, Bjorkholm J E et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 11, 288-290(1986).

    [18] Leutenegger M, Rao R, Leitgeb R A et al. Fast focus field calculations[J]. Optics Express, 14, 11277-11291(2006).

    [20] Cai Y N, Wang Z J, Liang Y S et al. Direct calculation of tightly focused field in an arbitrary plane[J]. Optics Communications, 450, 329-334(2019).

    [21] Shechtman Y, Sahl S J, Backer A S et al. Optimal point spread function design for 3D imaging[J]. Physical Review Letters, 113, 133902(2014).

    [22] Hanser B M, Gustafsson M G L, Agard D A et al. Phase-retrieved pupil functions in wide-field fluorescence microscopy[J]. Journal of Microscopy, 216, 32-48(2004).

    [23] Weiss L E, Shalev Ezra Y, Goldberg S et al. Three-dimensional localization microscopy in live flowing cells[J]. Nature Nanotechnology, 15, 500-506(2020).

    [25] Cai Y N, Yan S H, Wang Z J et al. Rapid tilted-plane Gerchberg-Saxton algorithm for holographic optical tweezers[J]. Optics Express, 28, 12729-12739(2020).

    [26] Di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays[J]. Optics Express, 15, 1913-1922(2007).

    [27] Meyer L, Wildanger D, Medda R et al. Dual-color STED microscopy at 30-nm focal-plane resolution[J]. Small (Weinheim an Der Bergstrasse, Germany), 4, 1095-1100(2008).

    [28] Itoh H, Matsumoto N, Inoue T. Spherical aberration correction suitable for a wavefront controller[J]. Optics Express, 17, 14367-14373(2009).

    [29] Lamprecht B, Satzinger V, Schmidt V et al. Spatial light modulator based laser microfabrication of volume optics inside solar modules[J]. Optics Express, 26, A227-A239(2018).

    [30] Juette M F, Gould T J, Lessard M D et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples[J]. Nature Methods, 5, 527-529(2008).

    [32] Huang B, Wang W, Bates M et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 319, 810-813(2008).

    [33] Pavani S R P, Thompson M A, Biteen J S et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 2995-2999(2009).

    [35] Balzarotti F, Eilers Y, Gwosch K C et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 355, 606-612(2017).

    [36] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-795(2006).

    [37] Pavani S R P, Piestun R. High-efficiency rotating point spread functions[J]. Optics Express, 16, 3484-3489(2008).

    [38] Piestun R, Schechner Y Y, Shamir J. Propagation-invariant wave fields with finite energy[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 17, 294-303(2000).

    [39] Greengard A, Schechner Y Y, Piestun R. Depth from diffracted rotation[J]. Optics Letters, 31, 181-183(2006).

    [40] Grover G, Quirin S, Fiedler C et al. Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging[J]. Biomedical Optics Express, 2, 3010-3020(2011).

    [41] Prasad S. Rotating point spread function via pupil-phase engineering[J]. Optics Letters, 38, 585-587(2013).

    [42] Berlich R, Stallinga S. High-order-helix point spread functions for monocular three-dimensional imaging with superior aberration robustness[J]. Optics Express, 26, 4873-4891(2018).

    [43] Siviloglou G, Broky J, Dogariu A et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 99, 213901(2007).

    [44] Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams[J]. Optics Letters, 32, 979-981(2007).

    [45] Zhou Y Z, Zickus V, Zammit P et al. High-speed extended-volume blood flow measurement using engineered point-spread function[J]. Biomedical Optics Express, 9, 6444-6454(2018).

    [46] Abraham A V, Ram S, Chao J et al. Quantitative study of single molecule location estimation techniques[J]. Optics Express, 17, 23352-23373(2009).

    [47] Smith C S, Joseph N, Rieger B et al. Fast, single-molecule localization that achieves theoretically minimum uncertainty[J]. Nature Methods, 7, 373-375(2010).

    [48] Shechtman Y, Weiss L E, Backer A S et al. Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions[J]. Nano Letters, 15, 4194-4199(2015).

    [49] Shechtman Y, Weiss L E, Backer A S et al. Multicolour localization microscopy by point-spread-function engineering[J]. Nature Photonics, 10, 590-594(2016).

    [50] Hershko E, Weiss L E, Michaeli T et al. Multicolor localization microscopy and point-spread-function engineering by deep learning[J]. Optics Express, 27, 6158-6183(2019).

    [51] Qu X H, Wu D, Mets L et al. Nanometer-localized multiple single-molecule fluorescence microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 101, 11298-11303(2004).

    [52] Dertinger T, Colyer R, Iyer G et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)[J]. Proceedings of the National Academy of Sciences, 106, 22287-22292(2009).

    [53] Holden S J, Uphoff S, Kapanidis A N. DAOSTORM: an algorithm for high-density super-resolution microscopy[J]. Nature Methods, 8, 279-280(2011).

    [54] Huang F, Schwartz S L, Byars J M et al. Simultaneous multiple-emitter fitting for single molecule super-resolution imaging[J]. Biomedical Optics Express, 2, 1377-1393(2011).

    [55] Nehme E, Freedman D, Gordon R et al. DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning[J]. Nature Methods, 17, 734-740(2020).

    [56] Ikoma H, Peng Y F, Broxton M et al. Snapshot multi-PSF 3D single-molecule localization microscopy using deep learning[C]. //Computational Optical Sensing and Imaging 2020, June 22-26, 2020, Washington, DC, United States, CW3B, 3(2020).

    [57] Li Y Z, Li C K, Hao X et al. Review and prospect for single molecule localization microscopy[J]. Laser & Optoelectronics Progress, 57, 240002(2020).

    [58] Gwosch K C, Pape J K, Balzarotti F et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells[J]. Nature Methods, 17, 217-224(2020).

    [60] Kuang C, Li S, Liu W et al. Breaking the diffraction barrier using fluorescence emission difference microscopy[J]. Scientific Reports, 3, 1441(2013).

    [62] You S T, Kuang C F, Li S et al. Three-dimensional super-resolution imaging for fluorescence emission difference microscopy[J]. AIP Advances, 5, 084901(2015).

    [63] Zhao G Y, Rong Z H, Kuang C F et al. 3D fluorescence emission difference microscopy based on spatial light modulator[J]. Journal of Innovative Optical Health Sciences, 9, 1641003(2016).

    [64] Rong Z H, Kuang C F, Fang Y et al. Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams[J]. Optics Communications, 354, 71-78(2015).

    [65] Zhao G Y, Kabir M M, Toussaint K C et al. Saturated absorption competition microscopy[J]. Optica, 4, 633-636(2017).

    [66] Li C K, Li Y H, Han Y B et al. Pulsed saturated absorption competition microscopy on nonbleaching nanoparticles[J]. ACS Photonics, 7, 1788-1798(2020).

    [67] Zhao G Y, Zheng C, Kuang C F et al. Nonlinear focal modulation microscopy[J]. Physical Review Letters, 120, 193901(2018).

    [68] Hao X, Yang Q, Kuang C F et al. Optical super-resolution imaging based on frequency shift[J]. Acta Optica Sinica, 41, 0111001(2021).

    [69] Chen Y C, Li C K, Hao X et al. Progress of point scanning super-resolution microscopy based on frequency shifting[J]. Laser & Optoelectronics Progress, 57, 180001(2020).

    [71] Belthangady C, Royer L A. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction[J]. Nature Methods, 16, 1215-1225(2019).

    [72] Ikoma H, Nguyen C M, Metzler C A et al. Depth from defocus with learned optics for imaging and occlusion-aware depth estimation[C]. //2021 IEEE International Conference on Computational Photography (ICCP), May 23-25, 2021, Haifa, Israel, 1-12(2021).

    [73] Sitzmann V, Diamond S, Peng Y F et al. End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging[J]. ACM Transactions on Graphics, 37, 1-13(2018).

    Tools

    Get Citation

    Copy Citation Text

    Xin Liu, Cuifang Kuang, Xu Liu, Xiang Hao. Research Progress of Computational Microscopy Imaging Based on Point Spread Function Engineering[J]. Laser & Optoelectronics Progress, 2021, 58(18): 1811008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: May. 28, 2021

    Accepted: Jun. 26, 2021

    Published Online: Aug. 23, 2021

    The Author Email: Hao Xiang (haox@zju.edu.cn)

    DOI:10.3788/LOP202158.1811008

    Topics