Infrared and Laser Engineering, Volume. 50, Issue 11, 20210425(2021)
Optical manipulation of vertical cavity and its applications (Invited)
[1] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).
[2] Liu A J, Wolf P, Lott J A, et al. Vertical-cavity surface-emitting lasers for data communication and sensing[J]. Photonics Research, 7, 121-136(2019).
[3] Liu A J. Progress in single-mode and directly modulated vertical-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 47, 0701005(2020).
[4] Koyama F. Recent advances of VCSEL photonics[J]. Journal of Lightwave Technology, 24, 4502-4513(2006).
[5] Rainer M. Fundamentals, technology and applications of vertical-cavity surface-emitting lasers[J]. Springer Series in Optical Sciences, 166, 560(2013).
[6] Wang Z, Gogna R, Deng H. What is the best planar cavity for maximizing coherent exciton-photon coupling[J]. Applied Physics Letters, 111, 061102(2017).
[7] Rakić A D, Djurišić A B, Elazar J M, et al. Optical properties of metallic films for vertical-cavity optoelectronic devices[J]. Applied Optics, 37, 5271-5283(1998).
[8] Soda H, Iga K, Kitahara C, et al. GaInAsP/InP surface emitting injection lasers[J]. Japanese Journal of Applied Physics, 18, 2329-2330(1979).
[9] Van der Ziel J P, Ilegems M. Multilayer GaAs-Al0.3Ga0.7As dielectric quarter wave stacks grown by molecular beam epitaxy[J]. Applied Optics, 14, 2627-2630(1975).
[10] Chang-Hasnain C J, Yang W. High-contrast gratings for integrated optoelectronics[J]. Advances in Optics and Photonics, 4, 379-440(2012).
[11] Zhou W, Zhao D, Shuai Y C, et al. Progress in 2D photonic crystal Fano resonance photonics[J]. Progress in Quantum Electronics, 38, 1-74(2014).
[12] Liu A J, Yang B, Wolf P, et al. GaAs-based subwavelength grating on an AlOx layer for a vertical-cavity surface-emitting laser[J]. OSA Continuum, 3, 317-324(2020).
[13] Huffaker D L, Deppe D G, Kumar K, et al. Native-oxide defined ring contact for low threshold vertical-cavity lasers[J]. Applied Physics Letters, 65, 97-99(1994).
[14] Weigl B, Grabherr M, Michalzik R, et al. High-power single-mode selectively oxidized vertical-cavity surface-emitting lasers[J]. IEEE Photonics Technology Letters, 8, 971-973(1996).
[15] Jung C, Jager R, Grabherr M, et al. 4.8 mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes[J]. Electronics Letters, 33, 1790-1791(1997).
[16] Moser P, Lott J A, Wolf P, et al. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s[J]. Electronics Letters, 48, 1292-1294(2012).
[17] Demeulenaere B, Bienstman P, Dhoedt B, et al. Detailed study of AlAs-oxidized apertures in VCSEL cavities for optimized modal performance[J]. IEEE Journal of Quantum Electronics, 35, 358-367(1999).
[18] Kalosha V P, Ledentsov N N, Bimberg D. Design considerations for large-aperture single-mode oxide-confined vertical-cavity surface-emitting lasers[J]. Applied Physics Letters, 101, 071117(2012).
[19] [19] Okur S, Scheller M, Seurin J F, et al. Highpower VCSEL arrays with customized beam divergence f 3Dsensing applications [C]Proceedings of SPIE, 2019, 10938: 109380F.
[20] Ahn J, Lu D, Deppe D G. All-epitaxial, lithographically defined, current-and mode-confined vertical-cavity surface-emitting laser based on selective interfacial fermi-level pinning[J]. Applied Physics Letters, 86, 021106(2005).
[21] Yang X, Li M X, Zhao G, et al. Small oxide-free vertical-cavity surface-emitting lasers with high efficiency and high power[J]. Electronics Letters, 50, 1864-1866(2014).
[22] Song D S, Kim S H, Park H G, et al. Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers[J]. Applied Physics Letters, 80, 3901-3903(2002).
[23] Yokouchi N, Danner A J, Choquette K D. Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 9, 1439-1445(2003).
[24] Liu A J, Xing M X, Qu H W, et al. Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser[J]. Applied Physics Letters, 94, 191105(2009).
[25] Liu A J, Chen W, Zhou W J, et al. Squeeze effect and coherent coupling behavior in photonic crystal vertical-cavity surface-emitting lasers[J]. Journal of Physics D: Applied Physics, 44, 115104(2011).
[26] Thompson B J, Gao Z, Fryslie S T M, et al. Mode engineering in linear coherently coupled vertical-cavity surface-emitting laser arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-5(2019).
[27] Liu A J, Chen W, Xing M X, et al. Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser[J]. Applied Physics Letters, 96, 151103(2010).
[28] Morgan R A, Guth G D, Focht M W, et al. Transverse mode control of vertical-cavity top-surface-emitting lasers[J]. IEEE Photonics Technology Letters, 5, 374-377(1993).
[29] Haglund A, Gustavsson J S, Vukusic J, et al. Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief[J]. IEEE Photonics Technology Letters, 16, 368-370(2004).
[30] Kaliteevski M, Brand S, Abram R A, et al. Hybrid states of Tamm plasmons and exciton polaritons[J]. Applied Physics Letters, 95, 251108(2009).
[31] Taghizadeh A, Chung I S. Dynamical dispersion engineering in coupled vertical cavities employing a high-contrast grating[J]. Scientific Reports, 7, 1-7(2017).
[32] Kusiaku K, El Daif O, Leclercq J L, et al. Dual-wavelength micro-resonator combining photonic crystal membrane and Fabry-Perot cavity[J]. Optics Express, 19, 15255-15264(2011).
[33] Kusiaku K, Leclercq J L, Viktorovitch P, et al. Tuneable dual-mode micro-resonator associating photonic crystal membrane and Fabry–Perot cavity[J]. IEEE Photonics Journal, 6, 1-9(2014).
[34] Peretti R, Seassal C, Viktorovich P, et al. Inhibition of light emission in a 2.5 D photonic structure[J]. Journal of Applied Physics, 116, 023107(2014).
[35] Kumari S, Haglund E P, Gustavsson J S, et al. Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850 nm[J]. Laser & Photonics Reviews, 12, 1700206(2018).
[36] Brückner R, Sudzius M, Hintschich S I, et al. Parabolic polarization splitting of Tamm states in a metal-organic microcavity[J]. Applied Physics Letters, 100, 062101(2012).
[37] Brückner R, Sudzius M, Hintschich S I, et al. Hybrid optical Tamm states in a planar dielectric microcavity[J]. Physical Review B, 83, 033405(2011).
[38] Brückner R, Zakhidov A A, Scholz R, et al. Phase-locked coherent modes in a patterned metal-organic microcavity[J]. Nature Photonics, 6, 322-326(2012).
[39] Horie Y, Arbabi A, Arbabi E, et al. Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures[J]. Optics Express, 24, 11677-11682(2016).
[40] Wang X, Albrecht A, Mai H H, et al. High resolution 3D NanoImprint technology: Template fabrication, application in Fabry–Pérot-filter-array-based optical nanospectrometers[J]. Microelectronic Engineering, 110, 44-51(2013).
[41] Xiao J, Song F, Han K, et al. Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography[J]. Journal of Micromechanics and Microengineering, 22, 025006(2012).
[42] [42] Gunning W J, DeNatale J, Stupar P, et al. Dual b adaptive focal plane array: an example of the challenge potential of intelligent integrated microsystems [C]Proceedings of SPIE, 2006, 6232: 62320F.
[43] [43] Gunning W J, DeNatale J, Stupar P, et al. Adaptive focal plane array: an example of MEMS, photonics, electronics integration [C]Proceedings of SPIE, 2005, 5783: 366375.
[44] [44] Ebermann M, Neumann N, Hiller K, et al. Widely tunable FabryPerot filter based MWIR LWIR microspectrometers [C]Proceedings of SPIE, 2012, 8374: 83740X.
[45] [45] Schröter J R, Lehmann S, Ebermann M, et al. Wavelength stabilization of electrostatically actuated micromechanical infrared FabryPérot filters [C]Proceedings of SPIE, 2013, 8868: 88680J.
[46] [46] Rissanen A, Mannila R, Tuohiniemi M, et al. Tunable MOEMS FabryPerot interferometer f miniaturized spectral sensing in nearinfrared [C]Proceedings of SPIE, 2014, 8977: 89770X.
[47] [47] Mannila R, Hyypiö R, Kkalainen M, et al. Gas detection with microelectromechanical FabryPerot interferometer technology in cell phone [C]Proceedings of SPIE, 2015, 9482: 94820P.
[48] Wang Z, Zhang B, Deng H. Dispersion engineering for vertical microcavities using subwavelength gratings[J]. Physical Review Letters, 114, 073601(2015).
[49] Liu A J, Zheng W H, Bimberg D. Comparison between high-and zero-contrast gratings as VCSEL mirrors[J]. Optics Communications, 389, 35-41(2017).
[50] Zhang J, Liu A J. Dispersion engineering for metastructure composed of a high-contrast subwavelength grating and a distributed Bragg reflector[J]. Advanced Photonics Research, 202000172(20212).
[51] Taghizadeh A, Mørk J, Chung I S. Vertical-cavity in-plane heterostructures: Physics and applications[J]. Applied Physics Letters, 107, 181107(2015).
[52] Huang M C Y, Zhou Y, Chang-Hasnain C J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating[J]. Nature Photonics, 1, 119-122(2007).
[53] Huang M C Y, Zhou Y, Chang-Hasnain C J. A nanoelectromechanical tunable laser[J]. Nature Photonics, 2, 180-184(2008).
[54] Inoue S, Kashino J, Matsutani A, et al. Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs[J]. Japanese Journal of Applied Physics, 53, 090306(2014).
[55] Liu A J, Hofmann W, Bimberg D. Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs[J]. Optical Express, 22, 11804-11811(2014).
[56] [56] Zhang J, Yang B, Liu A J . Design of 940nm VCSEL with metastructure [C]Proceedings of SPIE, 2019, 11182: 111820O.
[57] Li K, Rao Y, Chase C, et al. Monolithic high-contrast metastructure for beam-shaping VCSELs[J]. Optica, 5, 10-13(2018).
[58] [58] Boutami S, Bakir B B, Letartre X, et al. Photonic crystal slab mirrs f an ultimate vertical lateral confinement of light in vertical Fabry Perot cavities [C]Proceedings of SPIE, 2008, 6989: 69890V.
[59] Viktorovitch P, Ben Bakir B, Boutami S, et al. 3D harnessing of light with 2.5 D photonic crystals[J]. Laser & Photonics Reviews, 4, 401-413(2010).
[60] Chung I S, Mørk J. Silicon-photonics light source realized by III–V/Si-grating-mirror laser[J]. Applied Physics Letters, 97, 151113(2010).
[61] Park G C, Xue W, Taghizadeh A, et al. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide[J]. Laser & Photonics Reviews, 9, L11-L15(2015).
[62] Park G C, Xue W, Piels M, et al. Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics[J]. Scientific Reports, 6, 1-6(2016).
[63] Zhang B, Brodbeck S, Wang Z, et al. Coupling polariton quantum boxes in sub-wavelength grating microcavities[J]. Applied Physics Letters, 106, 051104(2015).
[64] Kim S, Zhang B, Wang Z, et al. Coherent polariton laser[J]. Physical Review X, 6, 011026(2016).
[65] Sciancalepore C, Bakir B B, Letartre X, et al. Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration[J]. Journal of Lightwave Technology, 29, 2015-2024(2011).
[66] Sciancalepore C, Bakir B B, Letartre X, et al. CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors[J]. IEEE Photonics Technology Letters, 24, 455-457(2011).
[67] Sciancalepore C, Bakir B B, Seassal C, et al. Thermal, modal, and polarization features of double photonic crystal vertical-cavity surface-emitting lasers[J]. IEEE Photonics Journal, 4, 399-410(2012).
[68] Yang H, Zhao D, Chuwongin S, et al. Transfer-printed stacked nanomembrane lasers on silicon[J]. Nature Photonics, 6, 615-620(2012).
[69] Sciancalepore C, Bakir B B, Menezo S, et al. III-V-on Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing[J]. IEEE Photonics Technology Letters, 25, 1111-1113(2013).
[70] Haglund E, Gustavsson J S, Bengtsson J, et al. Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings[J]. Optics Express, 24, 1999-2005(2016).
[71] Liu A J, Wolf P, Schulze J H, et al. Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry-Pérot filter array with GaInP sacrificial layer[J]. IEEE Photonics Journal, 8, 1-9(2016).
[72] Wang Y, Stellinga D, Klemm A B, et al. Tunable optical filters based on silicon nitride high contrast gratings[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 108-113(2014).
[73] Chase C, Zhou Y, Chang-Hasnain C J. Size effect of high contrast gratings in VCSELs[J]. Optics Express, 17, 24002-24007(2009).
[74] Yang W, Gerke S A, Zhu L, et al. Long-wavelength tunable detector using high-contrast grating[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 178-185(2014).
[75] Mao H, Silva K D, Martyniuk M, et al. MEMS-based tunable Fabry-Perot filters for adaptive multispectral thermal imaging[J]. Journal of Microelectromechanical Systems, 25, 227-235(2016).
[76] Horie Y, Arbabi A, Han S, et al. High resolution on-chip optical filter array based on double subwavelength grating reflectors[J]. Optics Express, 23, 29848-29854(2015).
[77] Kawanishi K, Shimatani A, Lee K J, et al. Cross-stacking of guided-mode resonance gratings for polarization-independent flat-top filtering[J]. Optics Letters, 45, 312-314(2020).
[78] Shuai Y, Zhao D, Tian Z, et al. Double-layer Fano resonance photonic crystal filters[J]. Optics Express, 21, 24582-24589(2013).
[79] Xiao M, Zhang Z, Chan C T. Surface impedance and bulk band geometric phases in one-dimensional systems[J]. Physical Review X, 4, 130-136(2014).
[80] Ozawa T, Price H M, Amo A, et al. Topological photonics[J]. Review of Modern Physics, 91, 015006(2019).
Get Citation
Copy Citation Text
Anjin Liu, Jing Zhang, Shaoyu Zhao. Optical manipulation of vertical cavity and its applications (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210425
Category: Special issue-Advanced technology of microcavity photonics materials and devices
Received: Aug. 10, 2021
Accepted: --
Published Online: Dec. 7, 2021
The Author Email: Anjin Liu (liuanjin@semi.ac.cn)