Acta Photonica Sinica, Volume. 53, Issue 7, 0753301(2024)

Polarization Photodetector Based on van der Waals Materials and Performance Enhancement Strategies (Invited)

Jing WANG1, Hanxue JIAO1、*, Yan CHEN1,2、**, Shuaiqin WU1,2, Xudong WANG1, Shukui ZHANG1, Junhao CHU1,2, and Jianlu WANG1,2
Author Affiliations
  • 1Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2Institute of Optoelectronics, Fudan University, Shanghai Key Laboratory for Intelligent Optoelectronics and Sensing, Shanghai 200433, China
  • show less
    References(106)

    [1] R G DRIGGERS. Encyclopedia of optical engineering(2003).

    [2] J S TYO, D L GOLDSTEIN, D B CHENAULT et al. Review of passive imaging polarimetry for remote sensing applications. Applied Optics, 45, 5453-5469(2006).

    [3] P DORADLA, K ALAVI, C JOSEPH et al. Detection of colon cancer by continuous-wave terahertz polarization imaging technique. Journal of Biomedical Optics, 18, 090504(2013).

    [4] S J HUARD. Polarization of light. Wiley-VCH(1997).

    [5] R M A AZZAM. Division-of-amplitude Photopolarimeter (DOAP) for the simultaneous measurement of all four stokes parameters of light. Optica Acta: International Journal of Optics, 29, 685-689(1982).

    [6] Huilin JIANG, Qiang FU, Jin DUAN et al. Research on infrared polarization imaging detection technology and application. Infrared Technology, 36, 345-349(2014).

    [7] Y CAO, V FATEMI, S FANG et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556, 43-50(2018).

    [8] J WEI, Y LI, L WANG et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nature Communications, 11, 6404(2020).

    [9] T AKAMATSU, T IDEUE, L ZHOU et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science, 372, 68-72(2021).

    [10] S WU, Y CHEN, X WANG et al. Ultra-sensitive polarization-resolved black phosphorus homojunction photodetector defined by ferroelectric domains. Nature Communications, 13, 3198(2022).

    [11] J WANG, M S GUDIKSEN, X DUAN et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 293, 1455-1457(2001).

    [12] K S NOVOSELOV, A K GEIM, S V MOROZOV et al. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004).

    [13] H YUAN, X LIU, F AFSHINMANESH et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nature Nanotechnology, 10, 707-713(2015).

    [14] Zhongming WEI, Jianbai XIA. Recent progress in polarization-sensitive photodetectors based on low-dimensional semiconductors. Acta Physica Sinica, 68, 163201(2019).

    [15] Z Q ZHOU, Y CUI, P H TAN et al. Optical and electrical properties of two-dimensional anisotropic materials. Journal of Semiconductors, 40, 061001(2019).

    [16] L LI, W HAN, L J PI et al. Emerging in-plane anisotropic two-dimensional materials. Infomat, 1, 54-73(2019).

    [17] K I BOLOTIN, K J SIKES, Z JIANG et al. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146, 351-355(2008).

    [18] C JANISCH, H SONG, C ZHOU et al. MoS2 monolayers on nanocavities: enhancement in light-matter interaction. 2d Materials, 3, 025017(2016).

    [19] F N XIA, H WANG, Y C JIA. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 5, 4458(2014).

    [20] J S QIAO, X H KONG, Z X HU et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 5, 4475(2014).

    [21] Z LUO, J MAASSEN, Y X DENG et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nature Communications, 6, 8572(2015).

    [22] K S NOVOSELOV, A MISHCHENKO, A CARVALHO et al. 2D materials and van der Waals heterostructures. Science, 353, aac9439(2016).

    [23] Y LIU, N O WEISS, X D DUAN et al. Van der Waals heterostructures and devices. Nature Reviews Materials, 1, 16042(2016).

    [24] Y LIU, Y HUANG, X F DUAN. Van der Waals integration before and beyond two-dimensional materials. Nature, 567, 323-333(2019).

    [25] A H CASTRO NETO, F GUINEA, N M R PERES et al. The electronic properties of graphene. Reviews of Modern Physics, 81, 109-162(2009).

    [26] L LI, Y YU, G J YE et al. Black phosphorus field-effect transistors. Nature Nanotechnology, 9, 372-377(2014).

    [27] Y CHEN, C CHEN, R KEALHOFER et al. Black arsenic: a layered semiconductor with extreme in-plane anisotropy. Advanced Materials, 30, 1800754(2018).

    [28] S GAO, C SUN, X ZHANG. Ultra-strong anisotropic photo-responsivity of bilayer tellurene: a quantum transport and time-domain first principle study. Nanophotonics, 9, 1931-1940(2020).

    [29] F XIA, H WANG, Y JIA. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 5, 4458(2014).

    [30] Z TIAN, C GUO, M ZHAO et al. Two-dimensional SnS: a phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano, 11, 2219-2226(2017).

    [31] W SHI, M GAO, J WEI et al. Tin Selenide (SnSe): growth, properties, and applications. Advanced Science, 5, 1700602(2018).

    [32] Z LI, Y YANG, X WANG et al. Three-dimensional optical anisotropy of low-symmetry layered GeS. ACS Applied Materials & Interfaces, 11, 24247-24253(2019).

    [33] X ZHOU, X HU, B JIN et al. Highly anisotropic GeSe nanosheets for phototransistors with ultrahigh photoresponsivity. Advanced Science, 5, 1800478(2018).

    [34] Y C LIN, H P KOMSA, C H YEH et al. Single-layer ReS2: two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano, 9, 11249-11257(2015).

    [35] E ZHANG, P WANG, Z LI et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano, 10, 8067-8077(2016).

    [36] W ZHOU, J CHEN, H GAO et al. Anomalous and polarization-sensitive photoresponse of Td-WTe2 from visible to infrared light. Advanced Materials, 31, 1804629(2019).

    [37] J LAI, Y LIU, J MA et al. Broadband anisotropic photoresponse of the "hydrogen atom" version type-II Weyl semimetal candidate TaIrTe4. ACS Nano, 12, 4055-4061(2018).

    [38] S HUANG, Y TATSUMI, X LING et al. In-plane optical anisotropy of layered gallium telluride. ACS Nano, 10, 8964-8972(2016).

    [39] S HOU, Z GUO, T XIONG et al. Optical and electronic anisotropy of a 2D semiconductor SiP. Nano Research, 15, 8579-8586(2022).

    [40] L LI, W WANG, P GONG et al. 2D GeP: An unexploited low-symmetry semiconductor with strong in-plane anisotropy. Advanced Materials, 30, 1706771(2018).

    [41] D KIM, K PARK, J H LEE et al. Anisotropic 2D SiAs for high-performance UV-visible photodetectors. Small, 17, 2006310(2021).

    [42] Z ZHOU, M LONG, L PAN et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs. ACS Nano, 12, 12416-12423(2018).

    [43] N TIAN, Y YANG, D LIU et al. High anisotropy in tubular layered exfoliated KP15. ACS Nano, 12, 1712-1719(2018).

    [44] S YANG, C HU, M WU et al. In-plane optical anisotropy and linear dichroism in low-symmetry layered TlSe. ACS Nano, 12, 8798-8807(2018).

    [45] Y NIU, R FRISENDA, E FLORES et al. Polarization-sensitive and broadband photodetection based on a mixed-dimensionality TiS3/Si p-n junction. Advanced Optical Materials, 6, 1800351(2018).

    [46] S LIU, W XIAO, M ZHONG et al. Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3). Nanotechnology, 29, 184002(2018).

    [47] S A S TALI, W ZHOU. Multiresonant plasmonics with spatial mode overlap: overview and outlook. Nanophotonics, 8, 1199-1225(2019).

    [48] J ZHA, M LUO, M YE et al. Infrared photodetectors based on 2D materials and nanophotonics. Advanced Functional Materials, 32, 2111970(2022).

    [49] J A HUANG, L B LUO. Low-dimensional plasmonic photodetectors: recent progress and future opportunities. Advanced Optical Materials, 6, 1701282(2018).

    [50] L WANG, M HASANZADEH KAFSHGARI, M MEUNIER. Optical properties and applications of plasmonic-metal nanoparticles. Advanced Functional Materials, 30, 2005400(2020).

    [51] J TONG, F SUO, J MA et al. Surface plasmon enhanced infrared photodetection. Opto-Electronic Advances, 2, 180026(2019).

    [52] Weidi HE, Dan SU, Shanjiang WANG et al. Progress of surface plasmon nanostructure enhanced photodetector (invited). Infrared and Laser Engineering, 50, 20211014(2021).

    [53] F AFSHINMANESH, J S WHITE, W CAI et al. Measurement of the polarization state of light using an integrated plasmonic polarimeter. Nanophotonics, 1, 125-129(2012).

    [54] H HU, X YANG, X GUO et al. Gas identification with graphene plasmons. Nature Communications, 10, 1131(2019).

    [55] M DAI, C WANG, B QIANG et al. Long-wave infrared photothermoelectric detectors with ultrahigh polarization sensitivity. Nature Communications, 14, 3421(2023).

    [56] J WANG, C JIANG, W LI et al. Anisotropic low‐dimensional materials for polarization‐sensitive photodetectors: from materials to devices. Advanced Optical Materials, 10, 2102436(2022).

    [57] S M A MIRZAEE, O LEBEL, J M NUNZI. Simple unbiased hot-electron polarization-sensitive near-infrared photodetector. ACS Applied Materials & Interfaces, 10, 11862-11871(2018).

    [58] S ZHOU, K CHEN, X GUO et al. Antenna-coupled vacuum channel nano-diode with high quantum efficiency. Nanoscale, 12, 1495-1499(2020).

    [59] J WEI, Y CHEN, Y LI et al. Geometric filterless photodetectors for mid-infrared spin light. Nature Photonics, 171-178(2022).

    [60] S CAKMAKYAPAN, P K LU, A NAVABI et al. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light: Science & Applications, 7, 20(2018).

    [61] Q S GUO, R W YU, C LI et al. Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nature Materials, 17, 986-992(2018).

    [62] S CASTILLA, I VANGELIDIS, V V PUSAPATI et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nature Communications, 11, 4872(2020).

    [63] P K VENUTHURUMILLI, P D YE, X XU. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano, 12, 4861-4867(2018).

    [64] M WANG, Z HUANG, R SALUT et al. Plasmonic helical nanoantenna as a converter between longitudinal fields and circularly polarized waves. Nano Letters, 21, 3410-3417(2021).

    [65] M DAI, C WANG, B QIANG et al. On-chip mid-infrared photothermoelectric detectors for full-Stokes detection. Nature Communications, 13, 4560(2022).

    [66] W LI, Z J COPPENS, L V BESTEIRO et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nature Communications, 6, 8379(2015).

    [67] J WEI, C XU, B DONG et al. Mid-infrared semimetal polarization detectors with configurable polarity transition. Nature Photonics, 15, 614-621(2021).

    [68] Jiahui DING, Yushan ZHU, Zijia LIU et al. Recent advances in two-dimensional ferroelectric materials. Chinese Science Bulletin, 68, 4103-4118(2023).

    [69] Hangyu XU, Peng WANG, Xiaoshuang CHEN et al. Research progress of two-dimensional semiconductor infrared photodetector (invited). Infrared and Laser Engineering, 50, 20211017(2021).

    [70] M A IQBAL, H XIE, L QI et al. Recent advances in ferroelectric-enhanced low-dimensional optoelectronic devices. Small, 19, e2205347(2023).

    [71] Y L TANG, Y L ZHU, X L MA et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science, 348, 547-551(2015).

    [72] F LI, L JIN, Z XU et al. Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Applied Physics Reviews, 1, 011103(2014).

    [73] WQ LIAO, Y ZHANG, C L HU et al. A lead-halide perovskite molecular ferroelectric semiconductor. Nature Communications, 6, 7338(2015).

    [74] P MARTINS, A C LOPES, S LANCEROS-MENDEZ. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39, 683-706(2014).

    [75] X WANG, P WANG, J WANG et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Advanced Materials, 27, 6575-6581(2015).

    [76] Y ZHOU, D WU, Y ZHU et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Letters, 17, 5508-5513(2017).

    [77] C CUI, W J HU, X YAN et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Letters, 18, 1253-1258(2018).

    [78] S WAN, Y LI, W LI et al. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale, 10, 14885-14892(2018).

    [79] M SI, A K SAHA, S GAO et al. A ferroelectric semiconductor field-effect transistor. Nature Electronics, 2, 580-586(2019).

    [80] Chenhui YU, Niming SHEN, Yong ZHOU et al. Research progress on ferroelectric localized field-enhanced low-dimensional material-based photodetectors (invited). Infrared and Laser Engineering, 51, 20220288(2022).

    [81] L LI, X LIU, Y LI et al. Two-dimensional hybrid perovskite-type ferroelectric for highly polarization-sensitive shortwave photodetection. J Journal of the American Chemical Society, 141, 2623-2629(2019).

    [82] J M YAN, J S YING, M Y YAN et al. Optoelectronic coincidence detection with two‐dimensional bi2o2se ferroelectric field‐effect transistors. Advanced Functional Materials, 31, 2103982(2021).

    [83] Y BAI, H JANTUNEN, J JUUTI. Ferroelectric oxides for solar energy conversion, multi-source energy harvesting/sensing, and opto-ferroelectric applications. ChemSusChem, 12, 2540-2549(2019).

    [84] Y CHEN, X WANG, L HUANG et al. Ferroelectric-tuned van der Waals heterojunction with band alignment evolution. Nature Communications, 12, 4030(2021).

    [85] W BANERJEE, A KASHIR, S KAMBA. Hafnium Oxide (HfO2)-a multifunctional oxide: a review on the prospect and challenges of hafnium oxide in resistive switching and ferroelectric memories. Small, 18, 2107575(2022).

    [86] C JI, D DEY, Y PENG et al. Ferroelectricity-driven self-powered ultraviolet photodetection with strong polarization sensitivity in a two-dimensional halide hybrid perovskite. Angewandte Chemie-International Edition, 59, 18933-18937(2020).

    [87] M YANKOWITZ, S CHEN, H POLSHYN et al. Tuning superconductivity in twisted bilayer graphene. Science, 363, 1059-1064(2019).

    [88] Z HAO, A M ZIMMERMAN, P LEDWITH et al. Electric field-tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science, 371, 1133-1138(2021).

    [89] Y JIANG, X LAI, K WATANABE et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature, 573, 91-95(2019).

    [90] A KERELSKY, L J MCGILLY, D M KENNES et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature, 572, 95-100(2019).

    [91] Y XIE, B LIAN, B JACK et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature, 572, 101-105(2019).

    [92] J FALSON, Y XU, M LIAO et al. Type-II Ising pairing in few-layer stanene. Science, 367, 1454-1457(2020).

    [93] L JIAO, S HOWARD, S RAN et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature, 579, 523-527(2020).

    [94] P SOLÍS-FERNÁNDEZ, Y TERAO, K KAWAHARA et al. Isothermal growth and stacking evolution in highly uniform bernal-stacked bilayer graphene. ACS Nano, 14, 6834-6844(2020).

    [95] Y CAO, V FATEMI, A DEMIR et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 556, 80-84(2018).

    [96] G LI, A LUICAN, J M B LOPES DOS SANTOS et al. Observation of Van Hove singularities in twisted graphene layers. Nature Physics, 6, 109-113(2010).

    [97] T CAO, Z L LI, D Y QIU et al. Gate switchable transport and optical anisotropy in 90° twisted bilayer black phosphorus. Nano Letters, 16, 5542-5546(2016).

    [98] W XIN, X K LI, X L HE et al. Black-phosphorus-based orientation-induced diodes. Advanced Materials, 30, 1704653(2018).

    [99] B WU, H ZHENG, S LI et al. Evidence for moire intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light: Science & Applications, 11, 166(2022).

    [100] C MA, S YUAN, P CHEUNG et al. Intelligent infrared sensing enabled by tunable moire quantum geometry. Nature, 604, 266-272(2022).

    [101] S DUAN, F QIN, P CHEN et al. Berry curvature dipole generation and helicity-to-spin conversion at symmetry-mismatched heterointerfaces. Nature Nanotechnology, 18, 867-874(2023).

    [102] Z LI, J HUANG, L ZHOU et al. An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces. Nature Communications, 14, 5568(2023).

    [103] W ZHANG, M HONG, J LUO. Centimeter-sized single crystal of a one-dimensional lead-free mixed-cation perovskite ferroelectric for highly polarization sensitive photodetection. Journal of the American Chemical Society, 143, 16758-16767(2021).

    [104] J WANG, Y LIU, S HAN et al. Ultrasensitive polarized-light photodetectors based on 2D hybrid perovskite ferroelectric crystals with a low detection limit. Science Bulletin, 66, 158-163(2021).

    [105] L H ZENG, Q M CHEN, Z X ZHANG et al. Multilayered PdSe2/Perovskite Schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Advanced Science, 6, 1901134(2019).

    [106] H AGARWAL, K NOWAKOWSKI, A FORRER et al. Ultra-broadband photoconductivity in twisted graphene heterostructures with large responsivity. Nature Photonics, 17, 1047-1053(2023).

    Tools

    Get Citation

    Copy Citation Text

    Jing WANG, Hanxue JIAO, Yan CHEN, Shuaiqin WU, Xudong WANG, Shukui ZHANG, Junhao CHU, Jianlu WANG. Polarization Photodetector Based on van der Waals Materials and Performance Enhancement Strategies (Invited)[J]. Acta Photonica Sinica, 2024, 53(7): 0753301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for Ultrafast Optics

    Received: Apr. 1, 2024

    Accepted: May. 17, 2024

    Published Online: Aug. 12, 2024

    The Author Email: JIAO Hanxue (jiaohanxue@fudan.edu.cn), CHEN Yan (yanchen_@fudan.edu.cn)

    DOI:10.3788/gzxb20245307.0753301

    Topics