Optics and Precision Engineering, Volume. 29, Issue 11, 2683(2021)

Identification and compensation of friction for modular joints based on grey wolf optimizer

Jing-kai CUI1...2, Hua-yang SAI1,2, En-yang ZHANG1, Ming-chao ZHU1, and Zhen-bang XU13,* |Show fewer author(s)
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics,Chinese Academy of Sciences, Changchun30033, China
  • 2University of Chinese Academy of Sciences, Beijing100049, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
  • show less
    Figures & Tables(15)
    Structure of modular joint
    Block diagram of modular joint control system
    Dynamic model of modular joint
    Platform of friction identification and compensation
    Fitting curves of friction torque
    Pseudo-random sequences and system responses
    Position updating in GWO
    Flowchart of the GWO algorithm
    Convergence curves of the GWO algorithm with different initial population
    Block diagram of friction compensation algorithm
    Results of friction compensation
    • Table 1. Identification results of static parameters

      View table
      View in Article

      Table 1. Identification results of static parameters

      模型参数速度区间/(°/s)辨识结果平均值
      Fc/(N·m)[-35,-0.5]14.300 614.409 8
      [0.5,35]14.519 0
      Fs/(N·m)[-35,-0.5]7.174 17.200 9
      [0.5,35]7.227 7
      ωs/(°/s)[-35,-0.5]11.868 212.410 5
      [0.5,35]12.952 7
      σ2/(N·m·s/°)[-35,-0.5]0.400 20.398 8
      [0.5,35]0.397 3
    • Table 2. Identification results of dynamic parameters

      View table
      View in Article

      Table 2. Identification results of dynamic parameters

      模型参数辨识结果
      σ0/(N·m/°)1 160
      σ1/(N·m·s/°)0.44
    • Table 3. Identification results of parameters based on GWO

      View table
      View in Article

      Table 3. Identification results of parameters based on GWO

      模型参数辨识结果
      Fc/(N·m)14.548 1
      Fs/(N·m)7.286 8
      ωs/(°/s)12.577 7
      σ2/(N·m·s/°)0.394 2
      σ0/(N·m/°)29 931
      σ1/(N·m·s/°)0.68
    • Table 4. Comparison of two friction parameter identification algorithms

      View table
      View in Article

      Table 4. Comparison of two friction parameter identification algorithms

      辨识算法辨识误差使用条件
      最小二乘法+预滑动区域线性化0.154 53最小二乘法要求函数连续可微,只适应于速度同向的辨识,需要分段辨识;将预滑动区域线性化来辨识动态参数会引入建模误差和计算误差
      灰狼算法0.124 71对辨识的数学模型无特殊要求,使用范围广,适用性强
    Tools

    Get Citation

    Copy Citation Text

    Jing-kai CUI, Hua-yang SAI, En-yang ZHANG, Ming-chao ZHU, Zhen-bang XU. Identification and compensation of friction for modular joints based on grey wolf optimizer[J]. Optics and Precision Engineering, 2021, 29(11): 2683

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Dec. 2, 2020

    Accepted: --

    Published Online: Dec. 10, 2021

    The Author Email: XU Zhen-bang (xuzhenbang@ciomp.ac.cn)

    DOI:10.37188/OPE.20212911.2683

    Topics