PhotoniX, Volume. 5, Issue 1, 4(2024)

Self-supervised denoising for multimodal structured illumination microscopy enables long-term super-resolution live-cell imaging

Xingye Chen1,2,3, Chang Qiao1,3、*, Tao Jiang4,5, Jiahao Liu4,6, Quan Meng4,5, Yunmin Zeng1, Haoyu Chen4,5, Hui Qiao1,3, Dong Li4,5、**, and Jiamin Wu1,3、***
Author Affiliations
  • 1Department of Automation, Tsinghua University, Beijing 100084, China
  • 2Research Institute for Frontier Science, Beihang University, Beijing 100083, China
  • 3Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China
  • 4National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
  • 5College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 6Laboratory of Image Processing and Intelligent Control of Ministry of Education of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    References(69)

    [18] [18] Huang B, Li J, Yao B, et al. Enhancing image resolution of confocal fluorescence microscopy with deep learning. PhotoniX. 2023;4:1–22.

    [25] [25] Qiao C, Li D, Liu Y, et al. Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nat Biotechnol. 2023;41:1–11.

    [26] [26] Rahaman N, Baratin A, Arpit D, Draxler F, Lin M, Hamprecht F, Bengio Y, Courville A. On the spectral bias of neural networks. International Conference on Machine Learning. 2019. p. 5301–5310. PMLR.

    [27] [27] Xu ZQ, Zhang Y, Luo T, Xiao Y, Ma Z. Frequency principle: Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523. 2019.

    [37] [37] Qiao C, Li D. BioSR: a biological image dataset for super-resolution microscopy. Figshare; 2022. https://figshare.com/articles/dataset/BioSR/13264793.

    [39] [39] Krull A, Buchholz TO, Jug F. Noise2void-learning denoising from single noisy images. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019. p. 2129–2137.

    [40] [40] Prakash M, Delbracio M, Milanfar P, Jug F. Interpretable unsupervised diversity denoising and artefact removal. arXiv preprint arXiv:2104.01374. 2021.

    [41] [41] Pang T, Zheng H, Quan Y, Ji H. Recorrupted-to-recorrupted: Unsupervised deep learning for image denoising. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 2021. p. 2043–2052.

    [42] [42] Wang Z, Liu J, Li G, Han H. Blind2unblind: Self-supervised image denoising with visible blind spots. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022. p. 2027–2036.

    [47] [47] Lehtinen J, Munkberg J, Hasselgren J, Laine S, Karras T, Aittala M, Aila T. Noise2Noise: Learning image restoration without clean data. arXiv preprint arXiv:1803.04189. 2018.

    [48] [48] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. arXiv preprint arXiv:1505.04597. 2015.

    [54] [54] Li X, Li Y, Zhou Y, et al. Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit. Nat Biotechnol. 2023;41:282–92.

    [61] [61] Zhang Y, Wang Y, Wang M, et al. Multi-focus light-field microscopy for high-speed large-volume imaging. PhotoniX. 2022;3:1–20.

    [64] [64] Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y. Image super-resolution using very deep residual channel attention networks. Proceedings of the European conference on computer vision (ECCV). 2018. p. 286–301.

    Tools

    Get Citation

    Copy Citation Text

    Xingye Chen, Chang Qiao, Tao Jiang, Jiahao Liu, Quan Meng, Yunmin Zeng, Haoyu Chen, Hui Qiao, Dong Li, Jiamin Wu. Self-supervised denoising for multimodal structured illumination microscopy enables long-term super-resolution live-cell imaging[J]. PhotoniX, 2024, 5(1): 4

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Aug. 18, 2023

    Accepted: Feb. 20, 2024

    Published Online: Apr. 9, 2024

    The Author Email: Qiao Chang (qc17@tsinghua.org.cn), Li Dong (lidong@ibp.ac.cn), Wu Jiamin (wujiamin@tsinghua.edu.cn)

    DOI:10.1186/s43074-024-00121-y

    Topics