PhotoniX, Volume. 5, Issue 1, 4(2024)
Self-supervised denoising for multimodal structured illumination microscopy enables long-term super-resolution live-cell imaging
[18] [18] Huang B, Li J, Yao B, et al. Enhancing image resolution of confocal fluorescence microscopy with deep learning. PhotoniX. 2023;4:1–22.
[25] [25] Qiao C, Li D, Liu Y, et al. Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nat Biotechnol. 2023;41:1–11.
[26] [26] Rahaman N, Baratin A, Arpit D, Draxler F, Lin M, Hamprecht F, Bengio Y, Courville A. On the spectral bias of neural networks. International Conference on Machine Learning. 2019. p. 5301–5310. PMLR.
[27] [27] Xu ZQ, Zhang Y, Luo T, Xiao Y, Ma Z. Frequency principle: Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523. 2019.
[37] [37] Qiao C, Li D. BioSR: a biological image dataset for super-resolution microscopy. Figshare; 2022. https://figshare.com/articles/dataset/BioSR/13264793.
[39] [39] Krull A, Buchholz TO, Jug F. Noise2void-learning denoising from single noisy images. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019. p. 2129–2137.
[40] [40] Prakash M, Delbracio M, Milanfar P, Jug F. Interpretable unsupervised diversity denoising and artefact removal. arXiv preprint arXiv:2104.01374. 2021.
[41] [41] Pang T, Zheng H, Quan Y, Ji H. Recorrupted-to-recorrupted: Unsupervised deep learning for image denoising. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 2021. p. 2043–2052.
[42] [42] Wang Z, Liu J, Li G, Han H. Blind2unblind: Self-supervised image denoising with visible blind spots. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022. p. 2027–2036.
[47] [47] Lehtinen J, Munkberg J, Hasselgren J, Laine S, Karras T, Aittala M, Aila T. Noise2Noise: Learning image restoration without clean data. arXiv preprint arXiv:1803.04189. 2018.
[48] [48] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. arXiv preprint arXiv:1505.04597. 2015.
[54] [54] Li X, Li Y, Zhou Y, et al. Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit. Nat Biotechnol. 2023;41:282–92.
[61] [61] Zhang Y, Wang Y, Wang M, et al. Multi-focus light-field microscopy for high-speed large-volume imaging. PhotoniX. 2022;3:1–20.
[64] [64] Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y. Image super-resolution using very deep residual channel attention networks. Proceedings of the European conference on computer vision (ECCV). 2018. p. 286–301.
Get Citation
Copy Citation Text
Xingye Chen, Chang Qiao, Tao Jiang, Jiahao Liu, Quan Meng, Yunmin Zeng, Haoyu Chen, Hui Qiao, Dong Li, Jiamin Wu. Self-supervised denoising for multimodal structured illumination microscopy enables long-term super-resolution live-cell imaging[J]. PhotoniX, 2024, 5(1): 4
Category: Research Articles
Received: Aug. 18, 2023
Accepted: Feb. 20, 2024
Published Online: Apr. 9, 2024
The Author Email: Qiao Chang (qc17@tsinghua.org.cn), Li Dong (lidong@ibp.ac.cn), Wu Jiamin (wujiamin@tsinghua.edu.cn)