PhotoniX, Volume. 5, Issue 1, 4(2024)

Self-supervised denoising for multimodal structured illumination microscopy enables long-term super-resolution live-cell imaging

Xingye Chen1...2,3, Chang Qiao1,3,*, Tao Jiang4,5, Jiahao Liu4,6, Quan Meng4,5, Yunmin Zeng1, Haoyu Chen4,5, Hui Qiao1,3, Dong Li4,5,**, and Jiamin Wu13,*** |Show fewer author(s)
Author Affiliations
  • 1Department of Automation, Tsinghua University, Beijing 100084, China
  • 2Research Institute for Frontier Science, Beihang University, Beijing 100083, China
  • 3Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China
  • 4National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
  • 5College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 6Laboratory of Image Processing and Intelligent Control of Ministry of Education of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    Figures & Tables(0)
    Tools

    Get Citation

    Copy Citation Text

    Xingye Chen, Chang Qiao, Tao Jiang, Jiahao Liu, Quan Meng, Yunmin Zeng, Haoyu Chen, Hui Qiao, Dong Li, Jiamin Wu. Self-supervised denoising for multimodal structured illumination microscopy enables long-term super-resolution live-cell imaging[J]. PhotoniX, 2024, 5(1): 4

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Aug. 18, 2023

    Accepted: Feb. 20, 2024

    Published Online: Apr. 9, 2024

    The Author Email: Qiao Chang (qc17@tsinghua.org.cn), Li Dong (lidong@ibp.ac.cn), Wu Jiamin (wujiamin@tsinghua.edu.cn)

    DOI:10.1186/s43074-024-00121-y

    Topics