Laser & Optoelectronics Progress, Volume. 61, Issue 6, 0618004(2024)

Advances in High-Throughput Single-Molecule Localization Microscopy (Invited)

Zhaojun Lin1、†, Huanzhi Chang1、†, and Yiming Li*
Author Affiliations
  • Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong , China
  • show less
    References(83)

    [1] Abbe E. Note on the proper definition of the amplifying power of a lens or lens-system[J]. Journal of the Royal Microscopical Society, 4, 348-351(1884).

    [2] Zhuang X W. Nano-imaging with storm[J]. Nature Photonics, 3, 365-367(2009).

    [3] Shao L, Kner P, Rego E H et al. Super-resolution 3D microscopy of live whole cells using structured illumination[J]. Nature Methods, 8, 1044-1046(2011).

    [4] Wildanger D, Medda R, Kastrup L et al. A compact STED microscope providing 3D nanoscale resolution[J]. Journal of Microscopy, 236, 35-43(2009).

    [5] Markwirth A, Lachetta M, Mönkemöller V et al. Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction[J]. Nature Communications, 10, 4315(2019).

    [6] Schermelleh L, Ferrand A, Huser T et al. Super-resolution microscopy demystified[J]. Nature Cell Biology, 21, 72-84(2019).

    [7] Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).

    [8] Heintzmann R, Jovin T M, Cremer C. Saturated patterned excitation microscopy: a concept for optical resolution improvement[J]. Journal of the Optical Society of America A, 19, 1599-1609(2002).

    [9] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [10] Biteen J, Willets K A. Introduction: super-resolution and single-molecule imaging[J]. Chemical Reviews, 117, 7241-7243(2017).

    [11] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [12] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [13] Hess S T, Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 91, 4258-4272(2006).

    [14] Xu K, Babcock H P, Zhuang X W. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton[J]. Nature Methods, 9, 185-188(2012).

    [15] Zhou R B, Han B R, Xia C L et al. Membrane-associated periodic skeleton is a signaling platform for RTK transactivation in neurons[J]. Science, 365, 929-934(2019).

    [16] Sengupta P, Jovanovic-Talisman T, Skoko D et al. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis[J]. Nature Methods, 8, 969-975(2011).

    [17] Jing Y Y, Zhou L L, Chen J L et al. Quantitatively mapping the assembly pattern of EpCAM on cell membranes with peptide probes[J]. Analytical Chemistry, 92, 1865-1873(2020).

    [18] Georgiades P, Allan V J, Wright G D et al. The flexibility and dynamics of the tubules in the endoplasmic reticulum[J]. Scientific Reports, 7, 16474(2017).

    [19] Shim S H, Xia C L, Zhong G S et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 13978-13983(2012).

    [20] Sigal Y M, Zhou R B, Zhuang X W. Visualizing and discovering cellular structures with super-resolution microscopy[J]. Science, 361, 880-887(2018).

    [21] Jacquemet G, Carisey A F, Hamidi H et al. The cell biologist’s guide to super-resolution microscopy[J]. Journal of Cell Science, 133, jcs240713(2020).

    [22] Barentine A E S, Lin Y, Courvan E M et al. An integrated platform for high-throughput nanoscopy[J]. Nature Biotechnology, 41, 1549-1556(2023).

    [23] Pegoraro G, Misteli T. High-throughput imaging for the discovery of cellular mechanisms of disease[J]. Trends in Genetics, 33, 604-615(2017).

    [24] Mau A, Friedl K, Leterrier C et al. Fast widefield scan provides tunable and uniform illumination optimizing super-resolution microscopy on large fields[J]. Nature Communications, 12, 3077(2021).

    [25] Holden S J, Pengo T, Meibom K L et al. High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization[J]. Proceedings of the National Academy of Sciences of the United States of America, 111, 4566-4571(2014).

    [26] Beghin A, Kechkar A, Butler C et al. Localization-based super-resolution imaging meets high-content screening[J]. Nature Methods, 14, 1184-1190(2017).

    [27] Jones T R, Kang I H, Wheeler D B et al. CellProfiler Analyst: data exploration and analysis software for complex image-based screens[J]. BMC Bioinformatics, 9, 482(2008).

    [28] Mund M, van der Beek J A, Deschamps J et al. Systematic nanoscale analysis of endocytosis links efficient vesicle formation to patterned actin nucleation[J]. Cell, 174, 884-896(2018).

    [29] Pinkard H, Phillips Z, Babakhani A et al. Deep learning for single-shot autofocus microscopy[J]. Optica, 6, 794-797(2019).

    [30] Lightley J, Görlitz F, Kumar S et al. Robust deep learning optical autofocus system applied to automated multiwell plate single molecule localization microscopy[J]. Journal of Microscopy, 288, 130-141(2022).

    [31] Chalfoun J, Majurski M, Blattner T et al. MIST: accurate and scalable microscopy image stitching tool with stage modeling and error minimization[J]. Scientific Reports, 7, 4988(2017).

    [32] Chang H Z, Fu S, Li Y M. Optimal sampling rate for 3D single molecule localization[J]. Optics Express, 31, 39703-39716(2023).

    [33] van de Linde S, Löschberger A, Klein T et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes[J]. Nature Protocols, 6, 991-1009(2011).

    [34] Huang F, Hartwich T M P, Rivera-Molina F E et al. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms[J]. Nature Methods, 10, 653-658(2013).

    [35] Diekmann R, Deschamps J, Li Y M et al. Photon-free (s)CMOS camera characterization for artifact reduction in high- and super-resolution microscopy[J]. Nature Communications, 13, 3362(2022).

    [36] von Diezmann L, Shechtman Y, Moerner W E. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking[J]. Chemical Reviews, 117, 7244-7275(2017).

    [37] von Diezmann A, Lee M Y, Lew M D et al. Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy[J]. Optica, 2, 985-993(2015).

    [38] Yan T, Richardson C J, Zhang M et al. Computational correction of spatially variant optical aberrations in 3D single-molecule localization microscopy[J]. Optics Express, 27, 12582-12599(2019).

    [39] Douglass K M, Sieben C, Archetti A et al. Super-resolution imaging of multiple cells by optimized flat-field epi-illumination[J]. Nature Photonics, 10, 705-708(2016).

    [40] Rowlands C J, Ströhl F, Ramirez P P V et al. Flat-field super-resolution localization microscopy with a low-cost refractive beam-shaping element[J]. Scientific Reports, 8, 5630(2018).

    [41] Stehr F, Stein J, Schueder F et al. Flat-top TIRF illumination boosts DNA-PAINT imaging and quantification[J]. Nature Communications, 10, 1268(2019).

    [42] Khaw I, Croop B, Tang J L et al. Flat-field illumination for quantitative fluorescence imaging[J]. Optics Express, 26, 15276-15288(2018).

    [43] Ibrahim K A, Mahecic D, Manley S. Characterization of flat-fielding systems for quantitative microscopy[J]. Optics Express, 28, 22036-22048(2020).

    [44] Zhao Z Y, Xin B, Li L C et al. High-power homogeneous illumination for super-resolution localization microscopy with large field-of-view[J]. Optics Express, 25, 13382-13395(2017).

    [45] Deschamps J, Rowald A, Ries J. Efficient homogeneous illumination and optical sectioning for quantitative single-molecule localization microscopy[J]. Optics Express, 24, 28080-28090(2016).

    [46] Kwakwa K, Savell A, Davies T et al. easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy[J]. Journal of Biophotonics, 9, 948-957(2016).

    [47] Ramachandran S, Cohen D A, Quist A P et al. High performance, LED powered, waveguide based total internal reflection microscopy[J]. Scientific Reports, 3, 2133(2013).

    [48] Archetti A, Glushkov E, Sieben C et al. Waveguide-PAINT offers an open platform for large field-of-view super-resolution imaging[J]. Nature Communications, 10, 1267(2019).

    [49] Diekmann R, Helle Ø I, Øie C I et al. Chip-based wide field-of-view nanoscopy[J]. Nature Photonics, 11, 322-328(2017).

    [50] Helle Ø I, Coucheron D A, Tinguely J C et al. Nanoscopy on-a-chip: super-resolution imaging on the millimeter scale[J]. Optics Express, 27, 6700-6710(2019).

    [51] Foylan S, Amos W B, Dempster J et al. MesoTIRF: a prism-based total internal reflection fluorescence illuminator for high resolution, high contrast imaging of large cell populations[J]. Applied Physics Letters, 122, 113701(2023).

    [52] McConnell G, Trägårdh J, Amor R et al. A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout[J]. eLife, 5, e18659(2016).

    [53] Rames M J, Kenison J P, Heineck D et al. Multiplexed and millimeter-scale fluorescence nanoscopy of cells and tissue sections via prism-illumination and microfluidics-enhanced DNA-PAINT[J]. Chemical & Biomedical Imaging, 1, 817-830(2023).

    [54] Gahlmann A, Ptacin J L, Grover G et al. Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in three dimensions[J]. Nano Letters, 13, 987-993(2013).

    [55] Thompson M A, Casolari J M, Badieirostami M et al. Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 17864-17871(2010).

    [56] Fu S, Li M F, Zhou L L et al. Deformable mirror based optimal PSF engineering for 3D super-resolution imaging[J]. Optics Letters, 47, 3031-3034(2022).

    [57] Huang B, Wang W Q, Bates M et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 319, 810-813(2008).

    [58] Backlund M P, Lew M D, Backer A S et al. The double-helix point spread function enables precise and accurate measurement of 3D single-molecule localization and orientation[J]. Proceedings of SPIE, 8590, 85900L(2013).

    [59] Pavani S R P, Thompson M A, Biteen J S et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 2995-2999(2009).

    [60] Jia S, Vaughan J C, Zhuang X W. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function[J]. Nature Photonics, 8, 302-306(2014).

    [61] Shechtman Y, Weiss L E, Backer A S et al. Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions[J]. Nano Letters, 15, 4194-4199(2015).

    [62] Shechtman Y, Weiss L E, Backer A S et al. Multicolour localization microscopy by point-spread-function engineering[J]. Nature Photonics, 10, 590-594(2016).

    [63] Shechtman Y, Gustavsson A K, Petrov P N et al. Observation of live chromatin dynamics in cells via 3D localization microscopy using Tetrapod point spread functions[J]. Biomedical Optics Express, 8, 5735-5748(2017).

    [64] Jusuf J M, Lew M D. Towards optimal point spread function design for resolving closely spaced emitters in three dimensions[J]. Optics Express, 30, 37154-37174(2022).

    [65] Yang B, Chen X Y, Wang Y N et al. Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution[J]. Nature Methods, 16, 501-504(2019).

    [66] Yang B, Lange M, Millett-Sikking A et al. DaXi-high-resolution, large imaging volume and multi-view single-objective light-sheet microscopy[J]. Nature Methods, 19, 461-469(2022).

    [67] Huisken J, Swoger J, del Bene F et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy[J]. Science, 305, 1007-1009(2004).

    [68] Keller P J, Schmidt A D, Wittbrodt J et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy[J]. Science, 322, 1065-1069(2008).

    [69] Navikas V, Descloux A C, Grussmayer K S et al. Adaptive optics enables multimode 3D super-resolution microscopy via remote focusing[J]. Nanophotonics, 10, 2451-2458(2021).

    [70] Basumatary J, Baro N, Joshi P et al. Scanning single molecule localization microscopy (scanSMLM) for super-resolution volume imaging[J]. Communications Biology, 6, 1050(2023).

    [71] Žurauskas M, Barnstedt O, Frade-Rodriguez M et al. Rapid adaptive remote focusing microscope for sensing of volumetric neural activity[J]. Biomedical Optics Express, 8, 4369-4379(2017).

    [72] Huang Z L, Zhu H Y, Long F et al. Localization-based super-resolution microscopy with an sCMOS camera[J]. Optics Express, 19, 19156-19168(2011).

    [73] Quan T W, Li P C, Long F et al. Ultra-fast, high-precision image analysis for localization-based super resolution microscopy[J]. Optics Express, 18, 11867-11876(2010).

    [74] Wang Y N, Quan T W, Zeng S Q et al. PALMER: a method capable of parallel localization of multiple emitters for high-density localization microscopy[J]. Optics Express, 20, 16039-16049(2012).

    [75] Munro I, García E, Yan M et al. Accelerating single molecule localization microscopy through parallel processing on a high-performance computing cluster[J]. Journal of Microscopy, 273, 148-160(2019).

    [76] Hu Y S, Nan X L, Sengupta P et al. Accelerating 3B single-molecule super-resolution microscopy with cloud computing[J]. Nature Methods, 10, 96-97(2013).

    [77] Cox S, Rosten E, Monypenny J et al. Bayesian localization microscopy reveals nanoscale podosome dynamics[J]. Nature Methods, 9, 195-200(2011).

    [78] Li L C, Xin B, Kuang W B et al. Divide and conquer: real-time maximum likelihood fitting of multiple emitters for super-resolution localization microscopy[J]. Optics Express, 27, 21029-21049(2019).

    [79] Ovesný M, Křížek P, Borkovec J et al. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging[J]. Bioinformatics, 30, 2389-2390(2014).

    [80] Gui D, Chen Y J, Kuang W B et al. Accelerating multi-emitter localization in super-resolution localization microscopy with FPGA-GPU cooperative computation[J]. Optics Express, 29, 35247-35260(2021).

    [81] Du Y, Wang C Z, Zhang C et al. Computational framework for generating large panoramic super-resolution images from localization microscopy[J]. Biomedical Optics Express, 12, 4759-4778(2021).

    [82] Cardona A, Saalfeld S, Schindelin J et al. TrakEM2 software for neural circuit reconstruction[J]. PLoS One, 7, e38011(2012).

    [83] Fu S, Shi W, Luo T D et al. Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging[J]. Nature Methods, 20, 459-468(2023).

    Tools

    Get Citation

    Copy Citation Text

    Zhaojun Lin, Huanzhi Chang, Yiming Li. Advances in High-Throughput Single-Molecule Localization Microscopy (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(6): 0618004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Microscopy

    Received: Nov. 28, 2023

    Accepted: Jan. 26, 2024

    Published Online: Mar. 29, 2024

    The Author Email: Li Yiming (liym2019@sustech.edu.cn)

    DOI:10.3788/LOP232570

    Topics