Photonics Research, Volume. 10, Issue 1, 111(2022)

Ultrahigh detectivity, high-speed and low-dark current AlGaN solar-blind heterojunction field-effect phototransistors realized using dual-float-photogating effect

Kai Wang1、†, Xinjia Qiu1、†, Zesheng Lv1, Zhiyuan Song1, and Hao Jiang1,2,3、*
Author Affiliations
  • 1School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • 2State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
  • 3Guangdong Engineering Technology R & D Center of Compound Semiconductors and Devices, Sun Yat-sen University, Guangzhou 510275, China
  • show less
    References(35)

    [1] C. Xie, X. T. Lu, X. W. Tong, Z. X. Zhang, F. X. Liang, L. Liang, L. B. Luo, Y. C. Wu. Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Adv. Funct. Mater., 29, 1806006(2019).

    [2] M. Razeghi. Short-wavelength solar-blind detectors: status, prospects, and markets. Proc. IEEE, 90, 1006-1014(2002).

    [3] G. Chen, F. Abou-Galala, Z. Xu, B. M. Sadler. Experimental evaluation of LED-based solar blind NLOS communication links. Opt. Express, 16, 15059-15068(2008).

    [4] Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, U. K. Mishra. Very-high power density AlGaN/GaN HEMTs. IEEE Trans. Electron Devices, 48, 2181-2183(2001).

    [5] T.-M. Kuan, S.-J. Chang, Y.-K. Su, C.-H. Ko, J. B. Webb, J. A. Bardwell, Y. Liu, H. Tang, W.-P. Lin, Y.-T. Cherng, W.-H. Lan. High optical-gain AlGaN/GaN2 dimensional electron gas photodetectors. Jpn. J. Appl. Phys., 42, 5563-5564(2003).

    [6] A. Yoshikawa, S. Ushida, K. Nagase, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki. High-performance solar-blind Al0.6Ga0.4N/Al0.5Ga0.5N MSM type photodetector. Appl. Phys. Lett., 111, 191103(2017).

    [7] H. L. Wu, W. C. Wu, H. X. Zhang, Y. D. Chen, Z. S. Wu, G. Wang, H. Jiang. All AlGaN epitaxial structure solar-blind avalanche photodiodes with high efficiency and high gain. Appl. Phys. Express, 9, 052103(2016).

    [8] Z. G. Shao, D. J. Chen, H. Lu, R. Zhang, D. P. Cao, W. J. Luo, Y. D. Zheng, L. Li, Z. H. Li. High-gain AlGaN solar-blind avalanche photodiodes. IEEE Electron Device Lett., 35, 372-374(2014).

    [9] L. X. Zhang, S. J. Tang, C. S. Liu, B. Li, H. L. Wu, H. L. Wang, Z. S. Wu, H. Jiang. Demonstration of solar-blind AlxGa1-xN-based heterojunction phototransistors. Appl. Phys. Lett., 107, 233501(2015).

    [10] L. J. Sun, Z. S. Lv, Z. H. Zhang, X. J. Qiu, H. Jiang. High-performance AlGaN heterojunction phototransistor with dopant-free polarization-doped p-base. IEEE Electron Device Lett., 41, 325-328(2020).

    [11] T. Narita, A. Wakejima, T. Egawa. Ultraviolet photodetectors using transparent gate AlGaN/GaN high electron mobility transistor on silicon substrate. Jpn. J. Appl. Phys., 52, 01AG06(2013).

    [12] A. M. Armstrong, B. Klein, A. A. Allerman, E. A. Douglas, A. G. Baca, M. H. Crawford, G. W. Pickrell, C. A. Sanchez. Visible-blind and solar-blind detection induced by defects in AlGaN high electron mobility transistors. J. Appl. Phys., 123, 114502(2018).

    [13] Q. F. Lyu, H. X. Jiang, K. M. Lau. High gain and high ultraviolet/visible rejection ratio photodetectors using p-GaN/AlGaN/GaN heterostructures grown on Si. Appl. Phys. Lett., 117, 071101(2020).

    [14] M. Iwaya, S. Miura, T. Fujii, S. Kamiyama, H. Amano, I. Akasaki. High-performance UV detector based on AlGaN/GaN junction heterostructure-field-effect transistor with a p-GaN gate. Phys. Status Solidi C, 6, S972-S975(2009).

    [15] M. A. Khan, Q. Chen, J. N. Kuznia, C. J. Sun, M. S. Shur. Gated photodetector based on GaN/AlGaN heterostructure field effect transistor. Electron. Lett., 31, 398-400(1995).

    [16] S. H. Baek, G. W. Lee, C. Y. Cho, S. N. Lee. Gate-controlled amplifiable ultraviolet AlGaN/GaN high-electron-mobility phototransistor. Sci. Rep., 11, 7172(2021).

    [17] X. J. Qiu, H. Jiang. Highly conductive and 260 nm transparent p-type Al0.6Ga0.4N achieved utilizing interface doping effects. Cryst. Growth Des., 21, 2389-2397(2021).

    [18] H. Jiang, G. Y. Zhao, H. Ishikawa, T. Egawa, T. Jimbo, M. Umeno. Determination of exciton transition energy and bowing parameter of AlGaN alloys in AlGaN/GaN heterostructure by means of reflectance measurement. J. Appl. Phys., 89, 1046-1052(2001).

    [19] P. Cantu, F. Wu, P. Waltereit, S. Keller, A. E. Romanov, S. P. DenBaars, J. S. Speck. Role of inclined threading dislocations in stress relaxation in mismatched layers. J. Appl. Phys., 97, 103534(2005).

    [20] A. Jiménez, Z. Bougrioua, J. M. Tirado, A. F. Braña, E. Calleja, E. Muñoz, I. Moerman. Improved AlGaN/GaN high electron mobility transistor using AlN interlayers. Appl. Phys. Lett., 82, 4827-4829(2003).

    [21] K. Takeuchi, S. Adachi, K. Ohtsuka. Optical properties of AlxGa1-xN alloy. J. Appl. Phys., 107, 023306(2010).

    [22] Z. H. Zaidi, P. A. Houston. Highly sensitive UV detection mechanism in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices, 60, 2776-2781(2013).

    [23] M. A. Green. Solar cells—operating principles, technology and system applications. Sol. Energy, 28, 447(1982).

    [24] S. M. Sze, K. K. Ng. Physics of Semiconductor Devices(2006).

    [25] B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, B. M. Onat. Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm. IEEE Photon. Technol. Lett., 23, 218-220(2011).

    [26] H. Bae, A. Charnas, X. Sun, J. Noh, M. Si, W. Chung, G. Qiu, X. Lyu, S. Alghamdi, H. Wang, D. Zemlyanov, P. D. Ye. Solar-blind UV photodetector based on atomic layer-deposited Cu2O and nanomembrane β-Ga2O3 pn oxide heterojunction. ACS Omega, 4, 20756-20761(2019).

    [27] J. Ma, X. Xia, S. Yan, Y. Li, W. Liang, J. Yan, X. Chen, D. Wu, X. Li, Z. Shi. Stable and self-powered solar-blind ultraviolet photodetectors based on a Cs3Cu2I5/β-Ga2O3 heterojunction prepared by dual-source vapor codeposition. ACS Appl. Mater. Interfaces, 13, 15409-15419(2021).

    [28] B. S. Qiao, Z. Z. Zhang, X. H. Xie, B. H. Li, K. X. Li, X. Chen, H. F. Zhao, K. W. Liu, L. Liu, D. Z. Shen. Avalanche gain in metal-semiconductor-metal Ga2O3 solar-blind photodiodes. J. Phys. Chem. C, 123, 18516-18520(2019).

    [29] S. C. Wu, M. J. Wu, Y. F. Chen. Nanolayered graphene/hexagonal boron nitride/n-AlGaN heterostructures as solar-blind deep-ultraviolet photodetectors. ACS Appl. Nano Mater., 3, 7595-7603(2020).

    [30] J. Z. Li, J. Y. Lin, H. X. Jiang, M. A. Khan, Q. Chen. Persistent photoconductivity in a two-dimensional electron gas system formed by an AlGaN/GaN heterostructure. J. Appl. Phys., 82, 1227-1230(1997).

    [31] J. Sun, T. Zhan, Z. Liu, J. Wang, X. Yi, P. M. Sarro, G. Zhang. Suppression of persistent photoconductivity AlGaN/GaN heterostructure photodetectors using pulsed heating. Appl. Phys. Express, 12, 122007(2019).

    [32] A. Kalra, S. Rathkanthiwar, R. Muralidharan, S. Raghavan, D. N. Nath. Material-to-device performance correlation for AlGaN-based solar-blind p-i-n photodiodes. Semicond. Sci. Technol., 35, 035001(2020).

    [33] N. Biyikli, O. Aytur, I. Kimukin, T. Tut, E. Ozbay. Solar-blind AlGaN-based Schottky photodiodes with low noise and high detectivity. Appl. Phys. Lett., 81, 3272-3274(2002).

    [34] C. J. Collins, U. Chowdhury, M. M. Wong, B. Yang, A. L. Beck, R. D. Dupuis, J. C. Campbell. Improved solar-blind detectivity using an AlxGa1-xN heterojunction p-i-n photodiode. Appl. Phys. Lett., 80, 3754-3756(2002).

    [35] T. Tut, M. Gokkavas, A. Inal, E. Ozbay. AlxGa1-xN-based avalanche photodiodes with high reproducible avalanche gain. Appl. Phys. Lett., 90, 163506(2007).

    Tools

    Get Citation

    Copy Citation Text

    Kai Wang, Xinjia Qiu, Zesheng Lv, Zhiyuan Song, Hao Jiang. Ultrahigh detectivity, high-speed and low-dark current AlGaN solar-blind heterojunction field-effect phototransistors realized using dual-float-photogating effect[J]. Photonics Research, 2022, 10(1): 111

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Sep. 28, 2021

    Accepted: Nov. 4, 2021

    Published Online: Dec. 13, 2021

    The Author Email: Hao Jiang (stsjiang@mail.sysu.edu.cn)

    DOI:10.1364/PRJ.444444

    Topics