Optics and Precision Engineering, Volume. 32, Issue 14, 2225(2024)

Optimized precision temperature control method and experimental validation for non-uniform discontinuous X-ray telescope

Xiaofeng ZHANG1... Jianchao FENG1, Jia MA2, Xing LIAO1, Yonghe ZHANG1,* and Yong CHEN2 |Show fewer author(s)
Author Affiliations
  • 1Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai20203, China
  • 2Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
  • show less
    References(16)

    [1] [1] 袁为民, 张臣, 陈勇, 等. 爱因斯坦探针: 探索变幻多姿的X射线宇宙[J]. 中国科学 (物理学 力学 天文学), 2018, 48(3): 2-21.YUANW M, ZHANGC, CHENY, et al. Einstein probe: exploring the ever-changing X-ray universe[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(3): 2-21.(in Chinese)

    [2] [2] 周庆勇, 魏子卿, 雷耀虎, 等. 面向脉冲星深空基准建立的X射线望远镜及发展设想[J]. 航空学报, 2023, 44(3): 36-53.ZHOUQ Y, WEIZ Q, LEIY H, et al. X-ray telescope for pulsar deep space reference and its development vision[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(3): 36-53.(in Chinese)

    [3] [3] 张星, 王娟, 张艺, 等. Wolter-I型聚焦镜热变形数值研究[J]. 光子学报, 2020, 49(5): 0512002. doi: 10.3788/gzxb20204905.0512002ZHANGX, WANGJ, ZHANGY, et al. Numerical study on thermal deformation of wolter-I focusing telescope[J]. Acta Photonica Sinica, 2020, 49(5): 0512002.(in Chinese). doi: 10.3788/gzxb20204905.0512002

    [4] [4] 祝宇轩. EP卫星FXT聚焦镜研究[D]. 长春: 吉林大学, 2022. doi: 10.7498/aps.71.20220017ZHUY X. Research on FXT focusing mirror of EP satellite[D]. Changchun: Jilin University, 2022. (in Chinese). doi: 10.7498/aps.71.20220017

    [5] [5] 杨勋, 徐抒岩, 马宏财, 等. 径向温度梯度对轻量化反射镜面形精度的影响[J]. 光学 精密工程, 2019, 27(7): 1552-1560. doi: 10.3788/ope.20192707.1552YANGX, XUS Y, MAH C, et al. Influence of radial temperature gradient on surface figure of lightweight reflective mirror[J]. Opt. Precision Eng., 2019, 27(7): 1552-1560.(in Chinese). doi: 10.3788/ope.20192707.1552

    [6] [6] 黄春玮. 轻质宽幅空间相机热控技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2023.HUANGC W. Research on thermal control technology of light and wide space camera[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2023. (in Chinese)

    [7] [7] 李强, 孔林, 张雷, 等. 多光谱大幅宽光学遥感卫星的热设计及验证[J]. 光学 精密工程, 2020, 28(4): 904-913. doi: 10.3788/OPE.20202804.0904LIQ, KONGL, ZHANGL, et al. Thermal design and validation of multispectral max width optical remote sensing satellite[J]. Opt. Precision Eng., 2020, 28(4): 904-913.(in Chinese). doi: 10.3788/OPE.20202804.0904

    [8] [8] 柏添, 孔林, 黄健, 等. 低倾角轨道微小遥感卫星的热设计及验证[J]. 光学 精密工程, 2020, 28(11): 2497-2506. doi: 10.37188/OPE.20202811.2497BAIT, KONGL, HUANGJ, et al. Thermal design and verification of micro remote-sensing satellite in low inclination orbit[J]. Opt. Precision Eng., 2020, 28(11): 2497-2506.(in Chinese). doi: 10.37188/OPE.20202811.2497

    [9] F W GUAN, F ZHANG, N L CAO et al. Thermal control design and experimental verification of light off-axis space optical remote sensor in the Sun-synchronous orbit. International Journal of Heat and Technology, 36, 125-132(2018).

    [10] [10] 曹恒, 强佳, 周成林, 等. 激光测距望远镜光学组件的热控设计与技术验证[J]. 科学技术创新, 2022(3): 6-9.CAOH, QIANGJ, ZHOUC L, et al. Analysis of thermal control design of laser imaging radar[J]. Scientific and Technological Innovation, 2022(3): 6-9.(in Chinese)

    [11] [11] 黑花阁, 李潇雁, 李璐芳, 等. 地球同步轨道大型空间相机主动热控系统设计[J]. 中国激光, 2023, 50(22): 3788/CJL230489.HEIH G, LIX Y, LIL F, et al. Design of active thermal control system for large space camera in geosynchronous orbit[J]. Chinese Journal of Lasers, 2023, 50(22): 3788/CJL230489.(in Chinese)

    [12] [12] 李朋, 周军, 于晓洲. 立方星电源系统最大功率点跟踪优化控制方法[J]. 宇航学报, 2019, 40(7): 824-830.LIP, ZHOUJ, YUX Z. An optimized maximum power point tracking control method for electrical power system of CubeSats[J]. Journal of Astronautics, 2019, 40(7): 824-830.(in Chinese)

    [13] Y XIONG, L GUO, D F TIAN et al. Intelligent optimization strategy based on statistical machine learning for spacecraft thermal design. IEEE Access, 8, 204268-204282(2020).

    [14] Z P YUAN, L H CHEN, H HAN et al. Optimal design of thermal control system for space optical remote sensor based on NSGA-II and opto-mechanical-thermal integration analysis. Case Studies in Thermal Engineering, 43, 102813(2023).

    [15] [15] 耿利寅, 张传强, 童叶龙, 等. 外热流扰动下航天器精密控温系统的设计及参数优化[J]. 航天器工程, 2023, 32(6): 10-17.GENGL Y, ZHANGC Q, TONGY L, et al. Design and parameter optimization of high-precision temperature control system for spacecraft disturbed by external heat flux[J]. Spacecraft Engineering, 2023, 32(6): 10-17.(in Chinese)

    [16] [16] 苏飘逸. 特定方向推力下的航天器快速协同交会的最优控制[D]. 济南: 山东大学, 2020.SUP Y. Optimal Control of Spacecraft Rapid Cooperative Rendezvous Under Specific Thrust[D]. Jinan: Shandong University, 2020. (in Chinese)

    Tools

    Get Citation

    Copy Citation Text

    Xiaofeng ZHANG, Jianchao FENG, Jia MA, Xing LIAO, Yonghe ZHANG, Yong CHEN. Optimized precision temperature control method and experimental validation for non-uniform discontinuous X-ray telescope[J]. Optics and Precision Engineering, 2024, 32(14): 2225

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 17, 2024

    Accepted: --

    Published Online: Sep. 27, 2024

    The Author Email: ZHANG Yonghe (zhangyh@microsate.com)

    DOI:10.37188/OPE.20243214.2225

    Topics