Laser & Optoelectronics Progress, Volume. 60, Issue 9, 0923001(2023)

Goos-Hänchen Shifts of Metal Layer and Quasicrystals with Monolayer Graphene

Zhengyang Li1, Haixia Da1,2、*, and Xiaohong Yan1,2,3
Author Affiliations
  • 1College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, China
  • 2Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, Jiangsu, China
  • 3School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
  • show less
    References(24)

    [1] Goos F, Hänchen H. Ein neuer und fundamentaler versuch zur totalreflexion[J]. Annalen Der Physik, 436, 333-346(1947).

    [2] Li C F. Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects[J]. Physical Review Letters, 91, 133903(2003).

    [3] Wild W J, Giles C L. Goos-Hänchen shifts from absorbing media[J]. Physical Review A, 25, 2099-2101(1982).

    [4] Lai H M, Chan S W. Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media[J]. Optics Letters, 27, 680-682(2002).

    [5] Wang L G, Chen H, Zhu S Y. Large negative Goos-Hänchen shift from a weakly absorbing dielectric slab[J]. Optics Letters, 30, 2936-2938(2005).

    [6] Leung P T, Chen C W, Chiang H P. Large negative Goos-Hanchen shift at metal surfaces[J]. Optics Communications, 276, 206-208(2007).

    [7] Merano M, Aiello A, 't Hooft G W et al. Observation of Goos-Hänchen shifts in metallic reflection[J]. Optics Express, 15, 15928-15934(2007).

    [8] Soboleva I V, Moskalenko V V, Fedyanin A A. Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces[J]. Physical Review Letters, 108, 123901(2012).

    [9] Berman P R. Goos-Hänchen shift in negatively refractive media[J]. Physical Review E, 66, 067603(2002).

    [10] Shadrivov I V, Zharov A A, Kivshar Y S. Giant Goos-Hänchen effect at the reflection from left-handed metamaterials[J]. Applied Physics Letters, 83, 2713-2715(2003).

    [11] Wu F, Wu J J, Guo Z W et al. Increase of Goos-Hänchen shift based on exceptional optical bound states[J]. Acta Optica Sinica, 41, 0823006(2021).

    [12] Butler S Z, Hollen S M, Cao L Y et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene[J]. ACS Nano, 7, 2898-2926(2013).

    [13] Grosche S, Szameit A, Ornigotti M. Spatial Goos-Hänchen shift in photonic graphene[J]. Physical Review A, 94, 063831(2016).

    [14] Stewart M E, Anderton C R, Thompson L B et al. Nanostructured plasmonic sensors[J]. Chemical Reviews, 108, 494-521(2008).

    [15] Fang N, Lee H, Sun C et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 308, 534-537(2005).

    [16] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [17] Li J S, Wu J F, Zhang L. Tunable terahertz wave Goos-Hänchen shift of reflected terahertz wave from prism-metal-polymer-metal multilayer structure[J]. Optics Communications, 334, 101-104(2015).

    [18] Han L, Li K L, Wu C. Comparison of the Goos-Hänchen shift induced by surface plasmon resonance in metal-MoSe2-graphene structure[J]. Plasmonics, 15, 2195-2203(2020).

    [19] Tang J, Xu J, Zheng Z W et al. Graphene Tamm plasmon-induced giant Goos-Hänchen shift at terahertz frequencies[J]. Chinese Optics Letters, 17, 020007(2019).

    [20] Kong W J, Sun Y, Lu Y. Enhanced Goos-Hänchen shift of graphene coated on one-dimensional photonic crystal[J]. Results in Physics, 17, 103107(2020).

    [21] Xu B, Zhao X J, Li G M et al. Large spatial Goos-Hänchen shifts from quasicrystals with graphene[J]. Results in Physics, 19, 103349(2020).

    [22] Choi S H, Kim S J, Byun K M. Design study for transmission improvement of resonant surface plasmons using dielectric diffraction gratings[J]. Applied Optics, 48, 2924-2931(2009).

    [23] Hanson G W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 103, 064302(2008).

    [24] Artmann K. Berechnung der seitenversetzung des totalreflektierten strahles[J]. Annalen Der Physik, 437, 87-102(1948).

    Tools

    Get Citation

    Copy Citation Text

    Zhengyang Li, Haixia Da, Xiaohong Yan. Goos-Hänchen Shifts of Metal Layer and Quasicrystals with Monolayer Graphene[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0923001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Mar. 16, 2022

    Accepted: Apr. 14, 2022

    Published Online: May. 9, 2023

    The Author Email: Da Haixia (eledah@njupt.edu.cn)

    DOI:10.3788/LOP221017

    Topics