Optics and Precision Engineering, Volume. 32, Issue 4, 549(2024)
Using image smoothing structure information to guide image inpainting
[1] G E HINTON, R R SALAKHUTDINOV. Reducing the dimensionality of data with neural networks. Science, 313, 504-507(2006).
[3] D P KINGMA, M WELLING. Auto-encoding variational Bayes. ArXiv e-Prints(2013).
[4] S IIZUKA, E SIMO-SERRA, H ISHIKAWA. Globally and locally consistent image completion. ACM Transactions on Graphics, 36, 1-14(2017).
[5] U DEMIR, G UNAL. Patch-based image inpainting with generative adversarial networks. ArXiv e-Prints(2018).
[6] J H YU, Z LIN, J M YANG et al. Free-form image inpainting with gated convolution, 4470-4479(2019).
[7] J H YU, Z LIN, J M YANG et al. Generative image inpainting with contextual attention, 5505-5514(2018).
[8] Z L YI, Q TANG, S AZIZI et al. Contextual residual aggregation for ultra high-resolution image inpainting, 7505-7514(2020).
[9] H Y LIU, B JIANG, Y B SONG et al.
[11] Y R REN, X M YU, R N ZHANG et al. StructureFlow: image inpainting via structure-aware appearance flow, 181-190(2019).
[12] W XIONG, J H YU, Z LIN et al. Foreground-aware image inpainting, 5833-5841(2019).
[13] M BERTALMIO, G SAPIRO, V CASELLES et al. Image inpainting(2000).
[14] P PERONA, J MALIK. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629-639(1990).
[15] J H SHEN, T CHAN. Mathematical models for local nontexture inpaintings. SIAM J Appl Math, 62, 1019-1043(2002).
[16] T F CHAN, J H SHEN. Nontexture inpainting by curvature-driven diffusions. Journal of Visual Communication and Image Representation, 12, 436-449(2001).
[17] M ELAD, M AHARON. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15, 3736-3745(2006).
[18] M IRANI, S PELEG. Improving resolution by image registration. CVGIP: Graphical Models and Image Processing, 53, 231-239(1991).
[19] A CRIMINISI, P PÉREZ, K TOYAMA. Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 13, 1200-1212(2004).
[20] C BARNES, E SHECHTMAN, A FINKELSTEIN et al. PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing, 619-629(2023).
[21] J B HUANG, S B KANG, N AHUJA et al. Image completion using planar structure guidance. ACM Transactions on Graphics, 33, 1-10(2014).
[22] D PATHAK, P KRÄHENBÜHL, J DONAHUE et al. Context encoders: feature learning by inpainting, 2536-2544(2016).
[23] C YANG, X LU, Z LIN et al. High-resolution image inpainting using multi-scale neural patch synthesis, 4076-4084(2017).
[24] M Y CHEN, Z LIU, L W YE et al. Attentional coarse-and-fine generative adversarial networks for image inpainting. Neurocomputing, 405, 259-269(2020).
[25] W Z QUAN, R S ZHANG, Y ZHANG et al. Image inpainting with local and global refinement. IEEE Transactions on Image Processing, 31, 2405-2420(1809).
[26] Y L ZHANG, Y Y WANG, J Y DONG et al. A joint guidance-enhanced perceptual encoder and atrous separable pyramid-convolutions for image inpainting. Neurocomputing, 396, 1-12(2020).
[27] G L LIU, F A REDA, K J SHIH et al. Image Inpainting for Irregular Holes Using Partial Convolutions. Computer Vision-ECCV 2018, 89-105(2018).
[28] C H XIE, S H LIU, C LI et al. Image inpainting with learnable bidirectional attention maps, 8857-8866(2019).
[29] C X ZHENG, T J CHAM, J F CAI. Pluralistic image completion, 1438-1447(2019).
[30] L ZHAO, Q H MO, S H LIN et al. UCTGAN: Diverse image inpainting based on unsupervised cross-space translation, 5740-5749(2020).
[31] L M XU, X H ZENG, W S LI et al. Multi-granularity generative adversarial nets with reconstructive sampling for image inpainting. Neurocomputing, 402, 220-234(2020).
[32] J L PENG, D LIU, S C XU et al. Generating diverse structure for image inpainting with hierarchical VQ-VAE, 10770-10779(2021).
[34] S Y YANG, Y WANG, H Y CAI et al. Residual inpainting using selective free-form attention. Neurocomputing, 510, 149-158(2022).
[35] J LIAN, J Z LIU, Z YANG et al. A pulse-number-adjustable MSPCNN and its image enhancement application. IEEE Access, 9, 161069-161086(2078).
[36] J LIAN, Z YANG, W H SUN et al. A fire-controlled MSPCNN and its applications for image processing. Neurocomputing, 422, 150-164(2021).
[37] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(2016).
[38] F YU, V KOLTUN. Multi-scale context aggregation by dilated convolutions. ArXiv e-Prints(2015).
[39] X D JASON, Q P ALVIN, B RUNXUE et al. Sampling through the lens of sequential decision making. arXiv e-prints(2022).
[40] T MIYATO, T KATAOKA, M KOYAMA et al. Spectral normalization for generative adversarial networks. arXiv preprint(2018).
[41] X D MAO, Q LI, H R XIE et al. Least squares generative adversarial networks, 2813-2821(2017).
[42] J Y LI, N WANG, L F ZHANG et al. Recurrent feature reasoning for image inpainting, 7757-7765(2020).
[43] J JOHNSON, A ALAHI, F F LI.
[44] A G LEON, S E ALEXANDER, B MATTHIAS et al. Image style transfer using convolutional neural networks, 2414-2423(2016).
[45] T KARRAS, T AILA, S LAINE et al. Progressive growing of GANs for improved quality, stability, and variation. ArXiv e-Prints(2017).
[46] B L ZHOU, A LAPEDRIZA, A KHOSLA et al. Places: a 10 million image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 1452-1464(2018).
[47] C DOERSCH, S SINGH, A GUPTA et al. What makes Paris look like Paris?. ACM Transactions on Graphics, 31, 1-9(2012).
[48] M Y ZHU, D L HE, X LI et al. Image inpainting by end-to-end cascaded refinement with mask awareness. IEEE Transactions on Image Processing, 30, 4855-4866(2021).
[49] J X DOU, L LUO, R M YANG. An optimal transport approach to deep metric learning (student abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 36, 12935-12936(2022).
[50] C X ZHENG, T J CHAM, J F CAI et al. Bridging global context interactions for high-fidelity image completion, 11502-11512(2022).
Get Citation
Copy Citation Text
Jiajun ZHANG, Jing LIAN, Jizhao LIU, Zilong DONG, Huaikun ZHANG. Using image smoothing structure information to guide image inpainting[J]. Optics and Precision Engineering, 2024, 32(4): 549
Category:
Received: Jul. 19, 2023
Accepted: --
Published Online: Apr. 2, 2024
The Author Email: LIAN Jing (lian322scc@163.com)