Optics and Precision Engineering, Volume. 32, Issue 4, 549(2024)

Using image smoothing structure information to guide image inpainting

Jiajun ZHANG1... Jing LIAN1,2,*, Jizhao LIU2, Zilong DONG1 and Huaikun ZHANG2 |Show fewer author(s)
Author Affiliations
  • 1School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou730000, China
  • 2School of Information Science and Engineering, Lanzhou University, Lanzhou730000, China
  • show less
    Figures & Tables(15)
    Overall architecture of the proposed method in this paper
    Reconstruction losses of different scales between the decoding layer and ground truth values in the network
    MFG module architecture
    Six mask images selected for quantitative comparison
    Qualitative comparison between the proposed method and other methods on three datasets. The first two rows display images from the CelebA-HQ dataset, the third and fourth rows show images from the Paris StreetView dataset, and the last three rows present images from the Places2 dataset. Different masks were used for testing in each image set. GT represents the ground truth.
    Comparison of inpainting results between networks with MFG module and networks without MFG module
    Visualization of the confidence level distribution
    Comparison of object removal effect between our method and other two methods in different scenarios(GT represents the ground truth, and Mask represents the mask image)
    • Table 1. Tested on the CelebA-HQ dataset

      View table
      View in Article

      Table 1. Tested on the CelebA-HQ dataset

      Masks1%~10%10%~20%20%~30%30%~40%40%~50%50%~60%
      MEA↓GC0.4450.3890.5180.6430.7530.972
      MADF0.9650.6180.8060.7310.8240.937
      MEDFE0.8830.3530.5270.7690.8690.831
      PIC0.7340.3910.4800.4730.6780.734
      RFR0.3170.4810.2930.5940.5590.720
      Ours0.1290.2380.1460.4830.6630.654
    • Table 2. Tested on the Paris StreetView dataset

      View table
      View in Article

      Table 2. Tested on the Paris StreetView dataset

      Masks1%~10%10%~20%20%~30%30%~40%40%~50%50%~60%
      MAE↓GC0.1730.3490.8770.7461.2802.467
      MADF0.1940.9831.2061.5711.4591.732
      MEDFE0.1370.5810.7910.8620.8221.612
      PIC0.2180.9231.1140.7430.9383.018
      RFR0.1510.8350.4290.6970.6161.260
      Ours0.1420.3280.4570.6500.6791.026
      PSNR↑GC32.6936.0336.8637.1238.2737.46
      MADF29.4328.4934.8235.6131.5434.46
      MEDFE34.7433.2835.9434.8734.0433.12
      PIC31.6730.7431.1133.6832.8731.68
      RFR35.9835.0835.3739.3939.9238.91
      Ours34.4236.2838.1237.5839.2338.67
    • Table 2. Tested on the CelebA-HQ dataset

      View table
      View in Article

      Table 2. Tested on the CelebA-HQ dataset

      Masks1%~10%10%~20%20%~30%30%~40%40%~50%50%~60%
      PSNR↑GC27.3828.2426.2424.4821.8222.13
      MADF26.7529.9424.0526.3927.2621.19
      MEDFE36.4827.1227.9324.7324.4623.42
      PIC32.6534.5624.6726.6825.1422.64
      RFR32.8230.0827.1827.7326.8925.12
      Ours37.1036.7628.4327.8127.7224.50
      SSIM↑GC0.9410.9420.8370.8550.8310.893
      MADF0.8270.9640.7390.8190.7280.823
      MEDFE0.9240.9750.7960.8360.6750.733
      PIC0.9630.9260.8680.8720.7410.816
      RFR0.9210.9810.8390.8960.8290.848
      Ours0.9760.9830.9210.8870.8460.883
      FID↓GC7.2818.7419.7218.3428.7953.51
      MADF8.9723.0922.9125.0827.0651.83
      MEDFE7.1316.3618.4717.2630.2758.64
      PIC7.4315.6718.4117.9327.3055.43
      RFR8.3716.5217.2918.1631.7858.46
      Ours6.2216.4417.4916.4321.1554.03
      LPIPS↓GC0.0140.0510.0790.0610.0970.153
      MADF0.0240.0450.0830.0780.0800.127
      MEDFE0.0150.0600.0410.0500.0910.157
      PIC0.0170.0530.0760.0640.0860.107
      RFR0.0180.0310.0610.0510.0870.113
      Ours0.0160.0230.0590.0470.0640.096
    • Table 3. Tested on the Places2 dataset

      View table
      View in Article

      Table 3. Tested on the Places2 dataset

      Masks1%~10%10%~20%20%~30%30%~40%40%~50%50%~60%
      FID↓GC14.3624.0733.5839.6753.4178.30
      MADF24.1530.8645.2652.7856.5562.04
      MEDFE19.0724.3734.3241.3949.8651.34
      PIC16.5422.9837.3154.2465.7875.98
      RFR17.3225.5638.1453.0664.0584.17
      Ours15.7221.5332.6540.6446.4953.79
      LPIPS↓GC0.0750.0770.1200.1670.2210.340
      MADF0.1460.2360.2870.2490.2430.203
      MEDFE0.0570.0760.1330.1680.2370.221
      PIC0.0680.0930.1510.2110.2510.238
      RFR0.0640.0470.1340.1460.2410.245
      Ours0.0330.0390.0960.1610.2170.205
    • Table 3. Tested on the Paris StreetView dataset

      View table
      View in Article

      Table 3. Tested on the Paris StreetView dataset

      Masks1%~10%10%~20%20%~30%30%~40%40%~50%50%~60%
      SSIM↑GC0.9210.9640.8400.9460.8620.761
      MADF0.5470.7530.6080.8820.8170.829
      MEDFE0.8330.9560.9370.9170.8490.846
      PIC0.8700.9110.8640.8680.7900.710
      RFR0.9810.9480.9190.9270.8690.879
      Ours0.9770.9730.9480.9380.8780.907
      FID↓GC8.268.8218.1022.7537.3248.57
      MADF12.0816.7420.4934.1147.0749.23
      MEDFE6.749.3919.2323.0846.9753.30
      PIC14.4318.2226.8236.9448.3568.65
      RFR8.099.1715.7918.4634.1148.76
      Ours7.198.6116.8421.0932.4647.34
      LPIPS↓GC0.0310.0240.0520.0850.1540.214
      MADF0.3970.1870.2130.1960.2020.270
      MEDFE0.0420.0210.0590.0550.0940.206
      PIC0.0340.0890.1060.1670.2400.215
      RFR0.0170.0280.0670.0590.1320.194
      Ours0.0220.0260.0480.0540.1180.143
    • Table 3. Tested on the Places2 dataset

      View table
      View in Article

      Table 3. Tested on the Places2 dataset

      Masks1%~10%10%~20%20%~30%30%~40%40%~50%50%~60%
      MAE↓GC0.1270.1860.5560.7111.5682.247
      MADF0.2300.8560.5280.9851.7031.833
      MEDFE0.1530.1810.6250.9161.0571.156
      PIC0.0980.2300.6970.9681.3601.416
      RFR0.0800.1730.7611.0411.4191.898
      Ours0.0740.1690.5070.7711.0071.169
      PSNR↑GC27.8228.5629.1523.0720.2619.36
      MADF24.9322.6823.4421.6020.8421.74
      MEDFE30.2728.1026.3024.1322.7020.38
      PIC30.4127.4528.8123.1521.4919.75
      RFR24.4425.6827.4720.6318.5614.42
      Ours30.3828.8129.7623.1823.3621.63
      SSIM↑GC0.9060.8260.7690.7550.6730.590
      MADF0.6920.6070.5740.5390.6210.628
      MEDFE0.9230.8600.7680.7250.6630.617
      PIC0.9130.8530.7540.6750.6930.532
      RFR0.9480.8680.7810.6270.5050.516
      Ours0.9620.8770.8060.7800.7160.676
    • Table 4. Quantitative analysis of ablation experiments

      View table
      View in Article

      Table 4. Quantitative analysis of ablation experiments

      结构设计MEA↓PSNR↑SSIM↑FID↓LPIPS↓
      平滑结构有MFG模块0.31627.950.90621.270.063
      无MFG模块1.58121.620.56555.640.235
      修复结果有MFG模块0.20726.520.94718.410.042
      无MFG模块1.66120.080.64042.970.175
    Tools

    Get Citation

    Copy Citation Text

    Jiajun ZHANG, Jing LIAN, Jizhao LIU, Zilong DONG, Huaikun ZHANG. Using image smoothing structure information to guide image inpainting[J]. Optics and Precision Engineering, 2024, 32(4): 549

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 19, 2023

    Accepted: --

    Published Online: Apr. 2, 2024

    The Author Email: LIAN Jing (lian322scc@163.com)

    DOI:10.37188/OPE.20243204.0549

    Topics