Laser & Optoelectronics Progress, Volume. 57, Issue 5, 053001(2020)

Structure Analysis and Experiment of an Offner-Type Short-Wave Infrared Imaging Spectrometer

Zhizhong Zheng1,3、*, Zhong Yang1, Yuantian Qin2, and Liguo Wang2
Author Affiliations
  • 1College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 211100, China
  • 2College of Aeronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
  • 3Nanjing Geological Survey Center, China Geological Survey, Nanjing, Jiangsu 210016, China
  • show less
    Figures & Tables(25)
    Structural composition of an Offner imaging spectrometer
    Exploded view of the components
    Finite element model of imaging spectrometer
    Nature mode sharp of mechanical structure and optical elements. (a) Mechanical structure; (b) optical elements
    RMS values between mirrors at 0-40 ℃
    PV values between mirrors at 0-40 ℃
    RMS values between translating mirrors at 0-40 ℃
    RMS values between rotating mirrors at 0-40 ℃
    Random test condition
    Vibration test scene
    Optical detection before and after vibration test
    Thermo optical test scene
    Short-wave scanning pictures
    Spectral image and spectral curve at 20 ℃. (a) Spectral image; (b) spectral curve
    • Table 1. 0 Absorption position at different temperaturesnm

      View table

      Table 1. 0 Absorption position at different temperaturesnm

      PeakTemperatureMeanExtremedifference
      5 ℃10 ℃15 ℃20 ℃25 ℃30 ℃35 ℃
      A1414.501413.651414.301415.471416.711417.811417.441415.692.11
      B2202.452202.312203.102204.062200.412200.032199.912201.752.30
    • Table 1. Index parameters of imaging spectrometer

      View table

      Table 1. Index parameters of imaging spectrometer

      ParameterValue
      Wavelength range /nm1000-2500
      Focal length /mm130
      F-number2.2
      Dispersion /(nm·pixel-1)7.5
      Slit dimension /mmHeight: 12, width: 0.025
      Detector array size /pixel320×256
      Detector pixel size /μm230×30
    • Table 1. 1 Spectral bandwidth value under different temperaturenm

      View table

      Table 1. 1 Spectral bandwidth value under different temperaturenm

      TemperatureMeanExtremedifference
      5 ℃10 ℃15 ℃20 ℃25 ℃30 ℃35 ℃
      38.736.1235.5739.5443.8342.8845.240.264.93
    • Table 2. Material property sheet for imaging spectrometer

      View table

      Table 2. Material property sheet for imaging spectrometer

      MaterialDensity (g·cm-3)Modulus ofelasticity /GPaPoisson's ratioCoefficient of thermalexpansion /(10-6 K-1)
      6061 aluminum2.70700.3321.7
      45 steel7.852020.3010.6
      K9 glass2.51550.217.1
    • Table 3. Shape errors and rigid displacement with 4 g acceleration load

      View table

      Table 3. Shape errors and rigid displacement with 4 g acceleration load

      DirectionParameterMirrorGratingImage planeCollimating mirror
      XRMS /nm0.530.200.520.04
      PV /nm12.891.692.251.57
      Rigid angular displacement /(″)Rigid line displacement /μm5.183.645.253.515.193.955.243.46
      YRMS /nm0.0100.0400.0500.004
      PV /mm1.530.633.112.12
      Rigid angular displacement /(″)Rigid line displacement /μm2.952.102.832.103.132.292.792.08
      ZRMS /nm0.140.050.200.01
      PV /mm5.401.030.530.15
      Rigid angular displacement /(″)Rigid line displacement /μm0.590.520.730.590.820.830.830.66
    • Table 4. Relative displacement between mirrors on X-direction 4 g acceleration load (angular displacement/line displacement)

      View table

      Table 4. Relative displacement between mirrors on X-direction 4 g acceleration load (angular displacement/line displacement)

      ComponentMirrorGratingImageplaneCollimatingmirror
      Mirror0.07″/1.16 μm0.57″/0.32 μm0.19″/0.23 μm
      Grating0.07″/1.16 μm-0.33″/0.46 μm0.10″/0.05 μm
      Image plane0.57″/0.32 μm0.33″/0.46 μm-0.41″/0.49 μm
      Collimatingmirror0.19″/0.23 μm0.10″/0.05 μm0.41″/0.49 μm-
    • Table 5. Relative displacement between mirrors on Y-direction 4 g acceleration load (angular displacement/line displacement)

      View table

      Table 5. Relative displacement between mirrors on Y-direction 4 g acceleration load (angular displacement/line displacement)

      ComponentMirrorGratingImageplaneCollimatingmirror
      Mirror-0.12″/0.03 μm0.34″/0.24 μm0.16″/0.04 μm
      Grating0.12″/0.03 μm-0.38″/0.25 μm0.08″/0.03 μm
      Image plane0.34″/0.24 μm0.38″/0.25 μm-0.45″/0.28 μm
      Collimatingmirror0.16″/0.04 μm0.08″/0.03 μm0.45″/0.28 μm-
    • Table 6. Relative displacement between mirrors on Z-direction 4 g acceleration load (angular displacement/line displacement)

      View table

      Table 6. Relative displacement between mirrors on Z-direction 4 g acceleration load (angular displacement/line displacement)

      ComponentMirrorGratingImageplaneCollimatingmirror
      Mirror-0.29″/0.19 μm0.34″/0.33 μm0.31″/0.20 μm
      Grating0.29″/0.19 μm-0.51″/0.33 μm0.27″/0.10 μm
      Image plane0.34″/0.33 μm0.51″/0.33 μm-0.31″/0.23 μm
      Collimatingmirror0.31″/0.20 μm0.27″/0.10 μm0.31″/0.23 μm-
    • Table 7. Shape errors and rigid displacement of imaging spectrometer on 0-40 ℃ temperature load

      View table

      Table 7. Shape errors and rigid displacement of imaging spectrometer on 0-40 ℃ temperature load

      ParameterMirrorGratingImage planeCollimating mirror
      maxRMS /nm12.915.816.417.9
      PV /nm86.275.279.3102.8
      Rigid angular displacement /(″)39.835.133.340.4
      Rigid line displacement /μm50.436.324.755.6
      minRMS /nm5.04.64.85.0
      PV /nm32.124.032.427.1
      Rigid angular displacement /(″)9.98.68.318.7
      Rigid line displacement /μm12.69.16.213.7
    • Table 8. Max relative displacement between mirrors on 0-40 ℃ temperature load (angular displacement/line displacement)

      View table

      Table 8. Max relative displacement between mirrors on 0-40 ℃ temperature load (angular displacement/line displacement)

      ComponentMirrorGratingImage planeCollimating mirror
      Mirror38.7″/40.3 μm54.3″/28.7 μm45.4″/53.9 μm
      Grating38.7″/40.3 μm32.3″/33.7 μm16.6″/19.0 μm
      Image plane54.3″/28.7 μm32.3″/33.7 μm31.7″/51.8 μm
      Collimatingmirror45.4″/53.9 μm16.6″/19.0 μm31.7″/51.8 μm
    • Table 9. Sinusoidal vibration test condition

      View table

      Table 9. Sinusoidal vibration test condition

      Frequency /HzMagnitude /gScanningspeed /(oct·min-1)Experimentaldirection
      5-1500.85X,Y,Z
    Tools

    Get Citation

    Copy Citation Text

    Zhizhong Zheng, Zhong Yang, Yuantian Qin, Liguo Wang. Structure Analysis and Experiment of an Offner-Type Short-Wave Infrared Imaging Spectrometer[J]. Laser & Optoelectronics Progress, 2020, 57(5): 053001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Aug. 5, 2019

    Accepted: Aug. 27, 2019

    Published Online: Mar. 5, 2020

    The Author Email: Zheng Zhizhong (zhengzz_js@126.com)

    DOI:10.3788/LOP57.053001

    Topics