Microelectronics, Volume. 53, Issue 4, 741(2023)
Design and Optimization of 12-kV SiC Planar Inversion MOSFET Using Shallow Trench N+ Injection in the JFET Region
[1] [1] ROUSSEL P. SiC market and industry update [C] // International SiC Power Electronics Application Workshop. Kista, Sweden. 2011.
[2] [2] AGARWAL A. Advances in SiC MOSFET performance[C] // ECPE SiC & GaN Forum Potential of Wide Bandgap Semicond. Power Electron, 2011.
[3] [3] DAS M K. Recent advances in (0001) 4H-SiC MOS device technology [J]. Materials Science Forum, 2004, 457/460(Pt.2): 1275-1280.
[4] [4] MARCKX D A. Breakthrough in power electronics from SiC: May 25, 2004-May 31, 2005 [R]. National Renewable Energy Lab. (NREL), Golden, CO (United States), 2006, NREL/SR-500-38515.
[5] [5] ABDELRAHMAN A S, ERDEM Z, ATTIA Y. et al. Wide bandgap devices in electric vehicle converters: a performance survey [J]. Canadian Journal of Electrical and Computer Engineering: J-CJECE, 2018, 41(1): 45-54.
[6] [6] MILLAN J, GODIGNON P, PERPINA X, et al. A survey of wide bandgap power semiconductor devices [J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2155-2163.
[7] [7] JIA Y F, LV H L, TANG X Y, et al. Growth and characterization of nitrogen-phosphorus hybrid passivated gate oxide film on N-type 4H-SiC epilayer [J]. Journal of Crystal Growth, 2019, 507: 98-102.
[8] [8] LI X Y, LEE S S, LI M J, et al. Effect of nitrogen passivation on interface composition and physical stress in SiO2/SiC(4H) structures [J]. Applied Physics Letters, 2018, 113(13): 131601.
[9] [9] JAYAWARDENA A, SHEN X, MOONEY P M, et al. Mechanism of phosphorus passivation of near-interface oxide traps in 4H-SiC MOS devices investigated by CCDLTS and DFT calculation [J]. Semiconductor Science and Technology, 2018, 33(6): 065005.
[10] [10] LIU G, AHYI A C, XU Y et al. Enhanced inversion mobility on 4H-SiC (11-20) using phosphorus and nitrogen interface passivation [J]. IEEE Electron Device Letters, 2013, 34(2): 181-183.
[11] [11] OKAMOTO D, SOMETANI M, HARADA S, et al. Improved channel mobility in 4H-SiC MOSFETs by boron passivation [J]. IEEE Electron Device Letters, 2014, 35(12): 1176-1178.
[12] [12] SHARMA Y K, AHYI A C, ISAACS-SMITH T, et al. High-mobility stable 4H-SiC MOSFETs using a thin PSG interfacial passivation layer [J]. IEEE Electron Device Letters, 2013, 34(2): 175-177.
[13] [13] XU S, REN C, LIANG Y C, et al. Theoretical analysis and experimental characterization of the dummy-gated VDMOSFET [J]. IEEE Transactions on Electron Devices, 2001, 48(9): 2168-2176.
[14] [14] HAN K, BALIGA B J, SUNG W. Split-gate 12-kV 4H-SiC MOSFET: analysis and experimental validation [J]. IEEE Electron Device Letters, 2017, 38(10): 1437-1440.
[15] [15] HAN K, BALIGA B J. Analysis and experimental quantification of 12-kV 4H-SiC split-gate octagonal MOSFET [J]. IEEE Electron Device Letters, 2019, 40(7): 1163-1166.
[16] [16] VUDUMULA P, KOTAMRAJU S. Design and optimization of 12-kV SiC planar inversion MOSFET using split dummy gate concept for high-frequency applications [J]. IEEE Transactions on Electron Devices, 2019, 66(12): 5266-5271.
[17] [17] BALIGA B J. Fundamentals of power semiconductor devices [M]. Raleigh, CA, USA: Springer, 2008.
Get Citation
Copy Citation Text
ZHANG Bingke, LI Xuhan, WANG Rui, DONG Jiajun, CHANG Shucheng, SUN Junmin, BAI Xue, LI Zheyang, JIN Rui. Design and Optimization of 12-kV SiC Planar Inversion MOSFET Using Shallow Trench N+ Injection in the JFET Region[J]. Microelectronics, 2023, 53(4): 741
Category:
Received: May. 1, 2023
Accepted: --
Published Online: Jan. 3, 2024
The Author Email: