Laser Journal, Volume. 45, Issue 6, 75(2024)
Vision loop closure detection algorithm based on Vision Transformer multi-model fusion
[1] [1] Dong Y, Wang S, Yue J, et al. A Novel Texture-Less Object Oriented Visual SLAM System[J]. IEEE Transactions on Intelligent Transportation Systems, 2021:36-49.
[2] [2] Wang H, Wang C, Xie L. Intensity Scan Context: Coding Intensity and Geometry Relations for Loop ClosureDetection[C]//IEEE International Conference on Robotics a - nd Automation (ICRA), 2020:2095-2101.
[3] [3] Xu Y, Huang J, Wang J, et al. ESA-VLAD: A Lightweight Network Based on Second-order Attention and NetVLAD for Loop Closure Detection[J]. IEEE Robotics and Automation Letters, 2021, (99): 1-1.
[4] [4] Rosas-Cervantes V, Lee S G. 3D Localization ofa Mobile Robot by Using Monte Carlo Algorithm and 2DFeatures of 3D Point Cloud[J]. International Journal of C-ontrol, Automation and Systems, 2020, 18(11): 2955-2965.
[5] [5] Mur-Artal R, Jd T. ORB - SLAM2: An Open - Sourc - e SLAM System for Monocular, Stereo, and RGB-D Ca-meras[J]. IEEE Transactions on Robotics, 2017:1255-1262.
[6] [6] Cummins M, Newman P. Appearance-only SLAM at large scale with FAB-MAP 2.0[J]. International Journal of Robotics Research, 2011, 30(9): 1100-1123.
[7] [7] Lowe D. Distinctive Image Features from Scale - Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[8] [8] Bay H, Ess A, Tuytelaars T, et al. SURF: Sp-eeded up robust features[J]. Computer Vision and Image U-nderstanding, 2008, 110(3): 346-359.
[9] [9] Calonder M, Lepetit V, Strecha C, et al. Brief: Binary robust independent elementary features[J]. Computer Vision-ECCV, 2010:778-792.
[10] [10] Rublee E, Rabaud V, Konolige K, et al. ORB: an efficient alternative to SIFT or SURF[C]//IEEE International Conference on Computer Visio, 2011:2564-2571.
[11] [11] Xiong F, Ding Y, Yu M, et al. A Lightweight sequence-based Unsupervised Loop Closure Detection[C]//International Joint Conference on Neural Networks (IJCNN), 2021:1-8.
[12] [12] Memon A R, Wang H, Hussain A. Loop closu-re detection using supervised and unsupervised deep neuralnetworks for monocular SLAM systems[J]. Robotics and Autonomous Systems, 2020, 126:103470.
[13] [13] Gomez-Ojeda R, Zuiga - Nol D, Moreno F, et al. PL - SLAM: a Stereo SLAM System through the Comb-ination of Points and Line Segments[J]. IEEE Transactions on Robotics, 2017:734-746.
[14] [14] Hou Y, Zhang H, Zhou S. Convolutional Neural Network-Based Image Representation for Visual Loop Closure Detection[J]. IEEE International Conference on Information and Automation, 2015:2238-2245.
[15] [15] Chen Z, Lam O, Jacobson A, et al. Convolutional Neural Network-based Place Recognition[J]. ComputerScience, 2014:1-8.
[18] [18] Ma J, Wang S, Zhang K, et al. Fast and Robust Loop-Closure Detection via Convolutional Auto-Encoder a-nd Motion Consensus[J]. IEEE Transactions on Industrial I-nformatics, 2022:3681-3691.
[20] [20] Bai D D, Wang C Q, Zhang B, et al. Matchingrange-constrained real-time loop closure detection with CN-Ns features[J]. Robotics and Biomimetics, 2016:70-75.
Get Citation
Copy Citation Text
HU Zhengnan, HU Likun. Vision loop closure detection algorithm based on Vision Transformer multi-model fusion[J]. Laser Journal, 2024, 45(6): 75
Category:
Received: Nov. 19, 2023
Accepted: Nov. 26, 2024
Published Online: Nov. 26, 2024
The Author Email: Likun HU (hlk3email@163.com)