Infrared and Laser Engineering, Volume. 47, Issue 5, 503003(2018)

Research progress of 2 μm GaSb-based high power semiconductor laser

Xie Shengwen1,2、*, Yang Cheng′ao1,2, Huang Shushan1,2, Yuan Ye1,2, Shao Fuhui1,2, Zhang Yi1,2, Shang Jinming1,2, Zhang Yu1,2, Xu Yingqiang1,2, Ni Haiqiao1,2, and Niu Zhichuan1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(50)

    [1] [1] Peters M, Rossin V, Zucker E. High-power high-efficiency laser diodes at JDSU[C]//High-Power Diode Laser Technology and Applications V, 2007: 1217-1222.

    [2] [2] Scholle K, Lamrini S, Koopmann P, et al. 2 μm Laser Sources and Their Possible Applications[M]. [S.L.] Frontiers in Guided Wave Optics and Optoelectronics, 2010.

    [3] [3] Werle P. A review of recent advances in semiconductor laser based gas monitors[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 1998, 54(2): 197-236.

    [5] [5] Zhang Dongyan, Wang Rongrui. Progress on mid-infrared lasers[J]. Laser & Infrared, 2011, 41(5): 487-491. (in Chinese)

    [7] [7] Garbuzov D Z, Menna R J, Maiorov M A, et al. 2.3- to 2.7-μm room-temperature cw operation of InGaAsSb/AlGaAsSb broad-contact and single-mode ridge-waveguide SCH-QW diode lasers[C]//Optoelectronics ′99-Integrated Optoelectronic Devices. International Society for Optics and Photonics, 1999: 124-129.

    [8] [8] Belenky G L, Kim J G, Shterengas L, et al. High-power 2.3 μm laser arrays emitting 10 W CW at room temperature[J]. Electronics Letters, 2004, 40(12): 737-738.

    [9] [9] Belenky G, Shterengas L, Donetsky D, et al. Advances in Type-I GaSb based lasers[J]. Japanese Journal of Applied Physics, 2008, 47(10): 8236-8238.

    [10] [10] Belenky G, Shterengas L, Kipshidze G, et al. Type-I diode lasers for spectral region above 3 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1426-1434.

    [11] [11] Lin Y, Suchalkin S, Kipshidze G, et al. Effect of hole transport on performance of infrared type-II superlattice light emitting diodes[J]. Journal of Applied Physics, 2015, 117(16): 757.

    [12] [12] Yang R Q, Bradshaw J L, Bruno J D, et al. Room temperature type-II interband cascade laser[J]. Applied Physics Letters, 2002, 81(3): 397-399.

    [13] [13] Vurgaftman I, Meyer J R. High-performance interband cascade lasers emitting in the 2.9-4.2 μm wavelength range[C]// SPIE, 2009, 7230: 747-748.

    [14] [14] Bewley W W, Kim C S, Kim M, et al. A new generation of interband cascade lasers[C]//15th International Conference on Narrow Gap Systems, AIP Conference Proceeding, 2011, 1416(1): 46-48.

    [15] [15] Vurgaftman I, Bewley W W, Merritt C D, et al. Physics of interband cascade lasers[C]//Quantum Sensing and Nanophotonic Devices IX, International Society for Optics and Photonics, 2012: 87-94.

    [16] [16] Vurgaftman I, Meyer J R. Mid-IR distributed-feedback interband cascade lasers[C]//Quantum Sensing and Nanophotonic Devices X, 2013: 1372-1375.

    [17] [17] Popov A, Sherstnev V, Yakovlev Y, et al. High power InAsSb/InAsSbP double heterostructure laser for continuous wave operation at 3.6 μm[J]. Applied Physics Letters, 1996, 68(20): 2790-2792.

    [18] [18] Simanowski S, Herres N, Mermelstein C, et al. Strain adjustment in (GaIn)(AsSb)/(AlGa)(AsSb) QWs for 2.3-2.7 μm laser structures[J]. Journal of Crystal Growth, 2000, 209(1): 15-20.

    [19] [19] Mermelstein C, Rattunde M, Kiefer R, et al. Physics and applications of III-Sb-based type-I QW diode lasers[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2002, 4651: 173-184.

    [20] [20] Kelemen M T, Rattunde M, Wagner J. Mid-infrared high-power diode lasers and modules[C]//SPIE, 2010, 7583:75830O.

    [22] [22] Yang R Q, Hill C J, Yang B H. High-temperature and low-threshold midinfrared interband cascade lasers[J]. Applied Physics Letters, 2005, 87(15): 151109.

    [23] [23] Hill C J, Mansour K, Qiu Y, et al. Thermoelectric cooled mid-IR interband cascade lasers[C]//Semiconductor Laser Conference, 2006 Conference Digest, 2006: 93-94.

    [24] [24] Rodriguez J B, Cerutti L, Tournie E. GaSb-based, 2.2μm type-I laser fabricated on GaAs substrate operating continuous wave at room temperature[J]. Applied Physics Letters, 2009, 94(2): 1875.

    [25] [25] Tournié E, Sanchez D, Cerutti L. Single mode operation of monolithic GaSb VCSELs[C]//Mirsens, 2012.

    [26] [26] Motyka M, Ryczko K, Sek G, et al. Type II quantum wells on GaSb substrate designed for laser-based gas sensing applications in a broad range of mid infrared[J]. Optical Materials, 2012, 34(7): 1107-1111.

    [27] [27] Weih R, Bauer A, Kamp M, et al. Interband cascade lasers with AlGaAsSb bulk cladding layers[J]. Optical Materials Express, 2013, 3(10): 1624-1631.

    [28] [28] Tian Z, Hinkey R, Zhao F, et al. Interband cascade lasers with separate-confinement layers[C]//LEOS 2008-, Meeting of the IEEE Lasers and Electro-Optics Society, IEEE, 2008:749-750.

    [29] [29] Mansour K, Hill C J, Qiu Y, et al. Dual-wavelength interband cascade lasers in mid-infrared spectral region[C]//Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. Conference on IET, 2008: 1-2.

    [30] [30] Jiang Y, Li L, Tian Z, et al. Electrically widely tunable interband cascade lasers[J]. Journal of Applied Physics, 2014, 115(11): 2697-2702.

    [31] [31] Vizbaras A, Dvinelis E, Trinkūnas A, et al. High-performance mid-infrared GaSb laser diodes for defence and sensing applications[C]//SPIE Defense, Sensing and Security, 2014:90-98.

    [32] [32] Melngailis I. Maser action in InAs diodes[J]. Applied Physics Letters, 1963, 2(9): 176-178.

    [33] [33] Caneau C, Srivastava A K, Dentai A G, et al. Room-temperature GaInAsSb/AlGaAsSb DH injection lasers at 2.2 microns[J]. Electronics Letters, 1985, 21(18): 815-817.

    [34] [34] Chiu T H, Tsang W T, Ditzenberger J A, et al. Room‐temperature operation of InGaAsSb/AlGaSb double heterostructure lasers near 2.2 μm prepared by molecular beam epitaxy[J]. Applied Physics Letters, 1986, 49(17):1051-1052.

    [35] [35] Choi H K, Eglash S J. High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 μm with low threshold current density[J]. Applied Physics Letters, 1992, 61: 1154-1156.

    [36] [36] Lee H, York P K, Menna R J, et al. Room-temperature 2.78 μm AlGaAsSb/ GaInAsSb quantum-well lasers[J]. Appl Phys Lett, 1995, 66: 1942.

    [37] [37] Garbuzov D Z, Martinelli R U, Lee H, et al. 4 W quasi-continuous-wave output power from 2 μm AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes[J]. Applied Physics Letters, 1997, 70(22): 2931-2933.

    [38] [38] Rattunde M, Mermelstein C, Schmitz J, et al. Comprehensive modeling of the electro-optical-thermal behavior of (AlGaIn)(AsSb)-based 2.0 μm diode lasers[J]. Applied Physics Letters, 2002, 80(22): 4085-4087.

    [39] [39] Rattunde M, Schmitz J, Kaufel G, et al. GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power[J]. Applied Physics Letters, 2006, 88(8): 2931.

    [40] [40] Kelemen M T, Weber J, Rattunde M, et al. High-power 1.9 μm diode laser arrays with reduced far-field angle[J]. IEEE Photonics Technology Letters, 2006, 18(4):628-630.

    [41] [41] Kim J G, Shterengas L, Martinelli R U, et al. High-power room-temperature continuous wave operation of 2.7 and 2.8 μm In(Al)GaAsSb/GaSb diode lasers[J]. Applied Physics Letters, 2003, 83(10): 1926-1928.

    [42] [42] Xing Junliang, Zhang Yu, Liao Yongping, et al. Investigation of interfaces in AlSb/InAs/Ga0.71In0.29Sb quantum wells by photoluminescence[J]. Journal of Applied Physics, 2014, 116(12): 406.

    [43] [43] Xing Junliang, Zhang Yu, Liao Yongping, et al. Room-temperature operation of 2.4 μm InGaAsSb/A1GaAsSb quantum-well laser diodes with low-threshold current density[J]. Chinese Physics Letters, 2014, 31(5): 69-71.

    [44] [44] Yong Cheng′ao, Zhang Yu, Liao Yongping, et al. 2-μm single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowth-free shallow-etched gratings by interference lithography[J]. Chinese Physics B, 2016, 25(2): 181-185.

    [45] [45] Liao Yongping, Zhang Yu, Xing Junliang, et al. High power laser diodes of 2 μm AlGaAsSb/InGaSb type I quantum-wells[J]. Journal of Semiconductors, 2015, 36(5): 50-53.

    [46] [46] Liao Yongping, Zhang Yu, Xing Junliang, et al. GaSb-based quantum wells 2 μm high power laser diode[J]. Chinese Journal of Laser, 2015, 42(S1): S102006. (in Chinese)

    [47] [47] Peters M, Rossin V, Zucker E. High-power high-efficiency laser diodes at JDSU[C]//High-Power Diode Laser Technology and Applications V, 2007: 1217-1222.

    [48] [48] Rattunde M, Schmitz J, Kaufel G, et al. GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power[J]. Applied Physics Letters, 2006, 88(8): 2931.

    [49] [49] Li Z G, Liu G J, You M H, et al. 2.0 μm room temperature CW operation of InGaAsSb/AlGaAsSb laser with asymmetric waveguide structure[J]. Laser Physics, 2009, 19(6): 1230-1233.

    [50] [50] Chen J, Kipshidze G, Shterengas L. Diode lasers with asymmetric waveguide and improved beam properties[J]. Applied Physics Letters, 2010, 96(24): 151.

    [51] [51] Shterengas L, Liang R, Kipshidze G, et al. Cascade type-I quantum well diode lasers emitting 960-mW near 3-μm[J]. Applied Physics Letters, 2014, 105(16): 797-800.

    [52] [52] Hosoda T, Feng T, Shterengas L, et al. High power cascade diode lasers emitting near 2-μm[J]. Applied Physics Letters, 2016, 108(13): 1089.

    CLP Journals

    [1] YANG Weixia, ZHANG Hexiang, PAN Fengchun, LIN Xueling. Electronic Structures and Optical Properties of Ru, Rh, Pd Doped GaSb[J]. Journal of Synthetic Crystals, 2021, 50(11): 2019

    [2] Yuan Ligang, Zhou Shouhuan, Zhao Hong, Chen Guo, Wei Lei, Li Bao, Wang Keqiang. 109.5 W output 1.94 micron Tm:YAP solid-state laser[J]. Infrared and Laser Engineering, 2019, 48(4): 405006

    Tools

    Get Citation

    Copy Citation Text

    Xie Shengwen, Yang Cheng′ao, Huang Shushan, Yuan Ye, Shao Fuhui, Zhang Yi, Shang Jinming, Zhang Yu, Xu Yingqiang, Ni Haiqiao, Niu Zhichuan. Research progress of 2 μm GaSb-based high power semiconductor laser[J]. Infrared and Laser Engineering, 2018, 47(5): 503003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 特约专栏-“红外半导体激光器”

    Received: Mar. 7, 2018

    Accepted: Apr. 10, 2018

    Published Online: Sep. 12, 2018

    The Author Email: Shengwen Xie (xsw@semi.ac.cn)

    DOI:10.3788/irla201847.0503003

    Topics