Optics and Precision Engineering, Volume. 31, Issue 6, 920(2023)

Deep learning image denoising based on multi-stage supervised with Res2-Unet

Yan LIU1... Gang CHEN1, Chunyu YU1,*, Shiyun WANG2 and Bin SUN3 |Show fewer author(s)
Author Affiliations
  • 1Nanjing University Posts and Telecommunications,College of Electronic and Optical Engineering, Nanjing20023,China
  • 2Jiangsu North Huguang Opto-Electronics Limited Corporation, Wuxi14035,China
  • 3Nanjing University Posts and Telecommunications, School of Automation, Nanjing21002,China
  • show less
    References(21)

    [1] K DABOV, V KATKOVNIK et al. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16, 2080-2095(2007).

    [2] S H GU, L ZHANG, W M ZUO et al. Weighted Nuclear Norm Minimization with Application to Image Denoising. OH, 2862-2869(2014).

    [3] V JAIN, J F MURRAY, F ROTH et al. Supervised Learning of Image Restoration with Convolutional Networks. Brazil, 1-8(2007).

    [4] K ZHANG, W M ZUO, Y J CHEN et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26, 3142-3155(2017).

    [5] K ZHANG, W M ZUO, L ZHANG. FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Transactions on Image Processing, 27, 4608-4622(2018).

    [6] S GUO, Z F YAN, K ZHANG et al. Toward Convolutional Blind Denoising of Real Photographs, 1712-1722(2020).

    [7] X LIU, M SUGANUMA, Z SUN et al. Dual Residual Networks Leveraging the Potential of Paired Operations for Image Restoration, 7000-7009(2020).

    [8] S W ZAMIR, A ARORA, S KHAN et al. Multi-stage Progressive Image Restoration, 14816-14826(2021).

    [9] J HU, L SHEN, S ALBANIE et al. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 2011-2023(2020).

    [10] [10] 10秦传波, 宋子玉, 曾军英, 等. 联合多尺度和注意力-残差的深度监督乳腺癌分割[J]. 光学 精密工程, 2021, 29(4): 877-895. doi: 10.37188/OPE.20212904.0877QINCH B, SONGZ Y, ZENGJ Y, et al. Deeply supervised breast cancer segmentation combined with multi-scale and attention-residuals[J]. Opt. Precision Eng., 2021, 29(4): 877-895.(in Chinese). doi: 10.37188/OPE.20212904.0877

    [11] S H GAO, M M CHENG, K ZHAO et al. Res2Net: a new multi-scale backbone architecture. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 652-662(2021).

    [12] [12] 12蔡体健, 彭潇雨, 石亚鹏, 等. 通道注意力与残差级联的图像超分辨率重建[J]. 光学 精密工程, 2021, 29(1): 142-151. doi: 10.37188/OPE.20212901.0142CAIT J, PENGX Y, SHIY P, et al. Channel attention and residual concatenation network for image super-resolution[J]. Opt. Precision Eng., 2021, 29(1): 142-151.(in Chinese). doi: 10.37188/OPE.20212901.0142

    [14] M Z ALOM, C YAKOPCIC, T M TAHA et al. Nuclei Segmentation with Recurrent Residual Convolutional Neural Networks Based U-net (R2U-net). OH, 228-233(2018).

    [15] X F GU, J LIU, X X ZOU et al. Using Checkerboard Rendering and Deconvolution to Eliminate Checkerboard Artifacts in Images Generated by Neural Networks, 197-200(2018).

    [17] [17] 17佟雨兵, 张其善, 祁云平. 基于PSNR与SSIM联合的图像质量评价模型[J]. 中国图象图形学报, 2006, 11(12): 1758-1763. doi: 10.11834/jig.2006012307TONGY B, ZHANGQ SH, QIY P. Image quality assessing by combining PSNR with SSIM[J]. Journal of Image and Graphics, 2006, 11(12): 1758-1763.(in Chinese). doi: 10.11834/jig.2006012307

    [18] P ARBELÁEZ, M MAIRE, C FOWLKES et al. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 898-916(2011).

    [19] A ABDELHAMED, S LIN, M S BROWN. A High-Quality Denoising Dataset for Smartphone Cameras, 1692-1700(2018).

    [20] [20] 20李泽田, 雷志春. 基于局部期望最大化注意力的图像降噪[J]. 液晶与显示, 2020, 35(4): 350-359. doi: 10.3788/yjyxs20203504.0350LIZ T, LEIZH CH. Local expectation-maximization attention network for image denoising[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(4): 350-359.(in Chinese). doi: 10.3788/yjyxs20203504.0350

    [21] [21] 21陈欣, 万敏杰, 马超, 等. 采用多尺度特征融合SSD的遥感图像小目标检测[J]. 光学 精密工程, 2021, 29(11): 2672-2682. doi: 10.37188/OPE.20212911.2672CHENX, WANM J, MACH, et al. Recognition of small targets in remote sensing image using multi-scale feature fusion-based shot multi-box detector[J]. Opt. Precision Eng., 2021, 29(11): 2672-2682.(in Chinese). doi: 10.37188/OPE.20212911.2672

    Tools

    Get Citation

    Copy Citation Text

    Yan LIU, Gang CHEN, Chunyu YU, Shiyun WANG, Bin SUN. Deep learning image denoising based on multi-stage supervised with Res2-Unet[J]. Optics and Precision Engineering, 2023, 31(6): 920

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jun. 30, 2022

    Accepted: --

    Published Online: Apr. 4, 2023

    The Author Email: YU Chunyu (yucy@njupt.edu.cn)

    DOI:10.37188/OPE.20233106.0920

    Topics