Optics and Precision Engineering, Volume. 31, Issue 6, 920(2023)

Deep learning image denoising based on multi-stage supervised with Res2-Unet

Yan LIU1... Gang CHEN1, Chunyu YU1,*, Shiyun WANG2 and Bin SUN3 |Show fewer author(s)
Author Affiliations
  • 1Nanjing University Posts and Telecommunications,College of Electronic and Optical Engineering, Nanjing20023,China
  • 2Jiangsu North Huguang Opto-Electronics Limited Corporation, Wuxi14035,China
  • 3Nanjing University Posts and Telecommunications, School of Automation, Nanjing21002,China
  • show less
    Figures & Tables(22)
    MSDR neural network structure
    SE module
    Res2Net-se network structure
    Res2-Unet-SE structure
    Supervised attention module
    Seven test images selected in Set12
    Comparison of different denoising on "Parrot"
    Comparison of different denoising on "Cameraman"
    Noise reduction comparison on scene 1
    Noise reduction and brightening comparison on scene 2
    Noise reduction and brightening comparison on scene 3
    Influence of SE module and supervised attention module
    MSE loss and combined loss impact on training
    Comparison of MSE loss and combined loss in gaussian noise training process
    • Table 1. Convolution kernel parameters in Res2-Unet-SE

      View table
      View in Article

      Table 1. Convolution kernel parameters in Res2-Unet-SE

      Conv-kernel3×3Res2Net-SE
      1×13×31×1
      Encode32328128
      646416256
      12812832512
      Decoder-12832512
      12812832512
      641664256
    • Table 2. PSNR index of different algorithms

      View table
      View in Article

      Table 2. PSNR index of different algorithms

      MethodCameramanHousePeppersStarfishButterflyAirplaneParrotAverage
      σ=15BM3D31.8834.8532.7531.1731.9631.1531.2732.14
      WNNM32.1835.1532.9732.7229.8531.4031.6132.26
      DNCNN32.5934.9933.2432.1333.2531.6731.8832.82
      FFDNET32.3735.0533.0131.9532.9231.5531.7932.65
      DURN32.4135.0233.1232.1033.3431.5931.9732.79
      MPRNET32.5935.1333.1732.0733.5431.7431.8532.87
      MSDR32.6435.0132.9032.2333.4531.6932.0432.85
      σ=25BM3D29.3932.8530.2028.6229.3428.5228.8129.67
      WNNM29.6433.2230.4029.0329.8528.6929.1229.99
      DNCNN30.0033.4931.0929.8730.6829.2429.5330.55
      FFDNET30.0533.2630.7229.2830.2929.0129.4230.29
      DURN29.7732.8430.3029.1930.1028.9129.1130.03
      MPRNET30.2333.5130.9029.8230.5829.3729.7130.58
      MSDR30.2133.5530.9429.9730.7329.2529.5930.60
      σ=50BM3D26.3529.6026.7625.1025.9125.3925.8626.42
      WNNM26.4530.3326.9525.4426.3225.4226.1426.72
      DNCNN27.2629.9627.3525.6426.8326.8325.8327.10
      FFDNET27.2430.3627.4125.6826.9225.7926.5727.13
      DURN26.8630.0127.0125.6526.7025.8126.1426.88
      MPRNET27.2930.2527.4125.6627.0926.2426.5927.21
      MSDR27.3730.3027.5926.0227.0125.9326.6727.27
    • Table 3. SSIM index of different algorithms

      View table
      View in Article

      Table 3. SSIM index of different algorithms

      MethodCameramanHousePeppersStarfishButterflyAirplaneParrotAverage
      σ=50BM3D0.776 00.806 20.789 90.751 70.821 60.774 70.777 20.785 3
      WNNM0.784 60.822 50.800 50.759 40.834 60.784 40.784 70.795 8
      DNCNN0.807 70.818 40.809 00.772 20.851 30.797 70.795 30.807 3
      FFDNET0.813 80.827 30.816 50.775 10.858 40.799 70.880 40.813 0
      DURN0.797 40.822 10.805 00.771 90.844 40.794 00.783 00.802 5
      MPRNET0.812 30.824 50.813 60.774 70.861 30.798 60.799 50.812 1
      MSDR0.814 60.829 90.814 50.779 40.860 10.799 20.801 10.814 1
    • Table 3. SSIM index of different algorithms

      View table
      View in Article

      Table 3. SSIM index of different algorithms

      MethodCameramanHousePeppersStarfishButterflyAirplaneParrotAverage
      σ=15BM3D0.900 20.886 40.906 80.901 80.938 90.901 50.894 80.904 3
      WNNM0.903 00.890 10.909 30.907 70.942 00.902 20.851 90.900 8
      DNCNN0.913 10.885 60.912 10.914 60.950 10.907 70.904 90.912 5
      FFDNET0.911 80.887 60.911 20.912 60.949 00.907 30.904 50.912 0
      DURN0.909 70.886 20.910 10.906 50.934 70.905 40.902 10.907 8
      MPRNET0.913 30.887 10.911 90.913 50.952 20.918 40.904 80.914 4
      MSDR0.914 40.890 10.911 90.914 40.950 50.908 30.905 20.913 6
      σ=25BM3D0.851 30.857 70.868 30.853 20.903 50.857 40.848 90.862 9
      WNNM0.859 40.860 20.872 70.857 60.908 40.861 60.851 90.867 4
      DNCNN0.840 80.852 40.875 10.853 90.916 50.854 00.839 30.861 7
      FFDNET0.875 50.862 10.874 90.865 90.920 50.870 30.862 40.875 9
      DURN0.866 70.859 10.874 90.865 70.915 20.864 90.853 50.871 4
      MPRNET0.875 90.862 70.879 60.865 40.921 10.870 30.861 80.876 7
      MSDR0.876 90.863 00.874 70.866 10.922 90.871 90.867 80.877 6
    • Table 4. PSNR/SSIM index of different algorithms

      View table
      View in Article

      Table 4. PSNR/SSIM index of different algorithms

      Method指标场景1场景2场景3Average
      BM3DPSNR/dB28.7130.2935.8931.63
      SSIM0.854 60.726 20.868 90.816 6
      DNCNNPSNR/dB25.1934.1137.6332.31
      SSIM0.647 60.883 90.889 30.806 9
      DURNPSNR/dB30.1936.8438.8035.27
      SSIM0.895 70.926 40.911 00.911 0
      FFDNETPSNR/dB31.1836.4540.1935.94
      SSIM0.883 10.922 80.933 90.913 3
      CBDNETPSNR/dB31.2836.9740.8836.38
      SSIM0.894 30.934 30.946 40.925 0
      MPRNETPSNR/dB31.3937.4941.7436.87
      SSIM0.893 40.941 10.955 90.930 1
      MSDRPSNR/dB31.5237.5441.5236.86
      SSIM0.895 90.942 00.953 10.930 3
    • Table 5. PSNR index of different measure dimensions

      View table
      View in Article

      Table 5. PSNR index of different measure dimensions

      S2345
      PSNR/dB26.9427.1227.2727.25
      SSIM0.803 10.812 80.814 10.813 6
    • Table 6. PSNR index of different module

      View table
      View in Article

      Table 6. PSNR index of different module

      MethodNo SAM,NO SESESAMSE,SAM
      PSNR/dB35.8537.1137.2737.54
      SSIM0.922 90.936 40.938 50.941 7
    • Table 7. PSNR/SSIM and operation time of different modules

      View table
      View in Article

      Table 7. PSNR/SSIM and operation time of different modules

      IndexMethod
      3×3conv+single-stage3×3conv+single-stage+Res2Net3×3conv+muti-stage3×3conv+muti-stage+Res2Net
      PSNR/dB25.2727.1226.4727.27
      SSIM0.773 90.813 20.792 50.814 1
      Time/ms169194239332
    Tools

    Get Citation

    Copy Citation Text

    Yan LIU, Gang CHEN, Chunyu YU, Shiyun WANG, Bin SUN. Deep learning image denoising based on multi-stage supervised with Res2-Unet[J]. Optics and Precision Engineering, 2023, 31(6): 920

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Jun. 30, 2022

    Accepted: --

    Published Online: Apr. 4, 2023

    The Author Email: YU Chunyu (yucy@njupt.edu.cn)

    DOI:10.37188/OPE.20233106.0920

    Topics