Laser & Optoelectronics Progress, Volume. 60, Issue 13, 1316001(2023)

Development and Application of Nano-Optogenetic Probes

Yiheng Tang1,2, Yang Weng1,2, Zequn Chen1,2, Xiaojing Li3,4, Ke Si3,4,5, Wei Gong3,4, Hongtao Lin4,6, and Lan Li1,2、*
Author Affiliations
  • 1Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
  • 2Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
  • 3School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • 4MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Hangzhou 310058, Zhejiang, China
  • 5College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • 6College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • show less
    References(157)

    [1] Bouthour W, Mégevand P, Donoghue J et al. Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond[J]. Nature Reviews Neurology, 15, 343-352(2019).

    [2] Guru A, Post R J, Ho Y Y et al. Making sense of optogenetics[J]. International Journal of Neuropsychopharmacology, 18, pyv079(2015).

    [3] Frank J A, Antonini M J, Anikeeva P. Next-generation interfaces for studying neural function[J]. Nature Biotechnology, 37, 1013-1023(2019).

    [4] Vázquez-Guardado A, Yang Y Y, Bandodkar A J et al. Recent advances in neurotechnologies with broad potential for neuroscience research[J]. Nature Neuroscience, 23, 1522-1536(2020).

    [5] Lu L, Liu X X, Yuan K. Progress of China brain science program[J]. Journal of Peking University (Health Sciences), 54, 791-795(2022).

    [6] Lozano A M, Dostrovsky J, Chen R et al. Deep brain stimulation for Parkinson’s disease: disrupting the disruption[J]. The Lancet Neurology, 1, 225-231(2002).

    [7] Borchers S, Himmelbach M, Logothetis N et al. Direct electrical stimulation of human cortex—the gold standard for mapping brain functions?[J]. Nature Reviews Neuroscience, 13, 63-70(2012).

    [8] Chen R, Canales A, Anikeeva P. Neural recording and modulation technologies[J]. Nature Reviews Materials, 2, 16093(2017).

    [9] Hernandez V H, Gehrt A, Reuter K et al. Optogenetic stimulation of the auditory pathway[J]. The Journal of Clinical Investigation, 124, 1114-1129(2014).

    [10] Goßler C, Bierbrauer C, Moser R et al. GaN-based micro-LED arrays on flexible substrates for optical cochlear implants[J]. Journal of Physics D: Applied Physics, 47, 205401(2014).

    [11] Cogan S F. Neural stimulation and recording electrodes[J]. Annual Review of Biomedical Engineering, 10, 275-309(2008).

    [12] Won S M, Song E M, Reeder J T et al. Emerging modalities and implantable technologies for neuromodulation[J]. Cell, 181, 115-135(2020).

    [13] Hallett M. Transcranial magnetic stimulation and the human brain[J]. Nature, 406, 147-150(2000).

    [14] Li J, Duan X Q, Zhang H N et al. Application and research progress of transcranial magnetic stimulation in idiopathic facial paralysis[J]. Chinese Journal of Laboratory Diagnosis, 27, 222-225(2023).

    [15] Sarica C, Nankoo J F, Fomenko A et al. Human studies of transcranial ultrasound neuromodulation: a systematic review of effectiveness and safety[J]. Brain Stimulation, 15, 737-746(2022).

    [16] Zhang D Q. Antidepressant-like effect of low-intensity transcranial ultrasound stimulation[D](2018).

    [17] Edelman B J, Johnson N, Sohrabpour A et al. Systems neuroengineering: understanding and interacting with the brain[J]. Engineering, 1, 292-308(2015).

    [18] Karl D. Optogenetics[J]. Nature Methods, 8, 26-29(2011).

    [19] Boyden E S, Zhang F, Bamberg E et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nature Neuroscience, 8, 1263-1268(2005).

    [20] Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics[J]. Annual Review of Neuroscience, 34, 389-412(2011).

    [21] Yizhar O, Fenno L E, Davidson T J et al. Optogenetics in neural systems[J]. Neuron, 71, 9-34(2011).

    [22] Kim T I, McCall J G, Jung Y H et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics[J]. Science, 340, 211-216(2013).

    [23] Gradinaru V, Mogri M, Thompson K R et al. Optical deconstruction of parkinsonian neural circuitry[J]. Science, 324, 354-359(2009).

    [24] Häusser M. Optogenetics: the age of light[J]. Nature Methods, 11, 1012-1014(2014).

    [25] Icha J, Weber M, Waters J C et al. Phototoxicity in live fluorescence microscopy, and how to avoid it[J]. BioEssays, 39, 1700003(2017).

    [26] Nagel G, Szellas T, Huhn W et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 100, 13940-13945(2003).

    [27] Lin J Y, Knutsen P M, Muller A et al. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation[J]. Nature Neuroscience, 16, 1499-1508(2013).

    [28] Inagaki H K, Jung Y, Hoopfer E D et al. Optogenetic control of drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship[J]. Nature Methods, 11, 325-332(2014).

    [29] Klapoetke N C, Murata Y, Kim S S et al. Independent optical excitation of distinct neural populations[J]. Nature Methods, 11, 338-346(2014).

    [30] Chuong A S, Miri M L, Busskamp V et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin[J]. Nature Neuroscience, 17, 1123-1129(2014).

    [31] Yin H Q, Jiang W Q, Liu Y Y et al. Advanced near-infrared light approaches for neuroimaging and neuromodulation[J]. BMEMat, e12023(2023).

    [32] Ding H, Lu L H, Shi Z et al. Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, 6632-6637(2018).

    [33] Chen S, Weitemier A Z, Zeng X et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics[J]. Science, 359, 679-684(2018).

    [34] Montgomery K L, Iyer S M, Christensen A J et al. Beyond the brain: optogenetic control in the spinal cord and peripheral nervous system[J]. Science Translational Medicine, 8, eaad7577(2016).

    [35] Kim T, Folcher M, Baba M D E et al. A synthetic erectile optogenetic stimulator enabling blue-light-inducible penile erection[J]. Angewandte Chemie International Edition, 54, 5933-5938(2015).

    [36] Baumbauer K M, DeBerry J J, Adelman P C et al. Keratinocytes can modulate and directly initiate nociceptive responses[J]. eLife, 4, 09674(2015).

    [37] Knollmann B C. Pacing lightly: optogenetics gets to the heart[J]. Nature Methods, 7, 889-891(2010).

    [38] Towne C, Montgomery K L, Iyer S M et al. Optogenetic control of targeted peripheral axons in freely moving animals[J]. PLoS One, 8, e72691(2013).

    [39] Bonin R P, Wang F, Desrochers-Couture M et al. Epidural optogenetics for controlled analgesia[J]. Molecular Pain, 12, 174480691662905(2016).

    [40] Miyamoto D, Murayama M. The fiber-optic imaging and manipulation of neural activity during animal behavior[J]. Neuroscience Research, 103, 1-9(2016).

    [41] Segev E, Reimer J, Moreaux L C et al. Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics[J]. Neurophotonics, 4, 011002(2016).

    [42] Buzsáki G, Stark E, Berényi A et al. Tools for probing local circuits: high-density silicon probes combined with optogenetics[J]. Neuron, 86, 92-105(2015).

    [43] Seymour J P, Wu F, Wise K D et al. State-of-the-art MEMS and microsystem tools for brain research[J]. Microsystems & Nanoengineering, 3, 16066(2017).

    [44] Wu F, Stark E, Ku P C et al. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals[J]. Neuron, 88, 1136-1148(2015).

    [45] Qazi R, Kim C Y, Byun S H et al. Microscale inorganic LED based wireless neural systems for chronic in vivo optogenetics[J]. Frontiers in Neuroscience, 12, 764(2018).

    [46] Covington H E, Lobo M K, Maze I et al. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex[J]. The Journal of Neuroscience, 30, 16082-16090(2010).

    [47] Wykes R C, Heeroma J H, Mantoan L et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy[J]. Science Translational Medicine, 4, 161ra152(2012).

    [48] Stefanik M T, Moussawi K, Kupchik Y M et al. Optogenetic inhibition of cocaine seeking in rats[J]. Addiction Biology, 18, 50-53(2013).

    [49] Van Wyk M, Pielecka-Fortuna J, Löwel S et al. Restoring the ON switch in blind retinas: opto-mGluR6, a next-generation, cell-tailored optogenetic tool[J]. PLoS Biology, 13, e1002143(2015).

    [50] Sengupta A, Chaffiol A, Macé E et al. Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina[J]. EMBO Molecular Medicine, 8, 1248-1264(2016).

    [51] Cao Y, Pan S W, Yan M Y et al. Flexible and stretchable polymer optical fibers for chronic brain and vagus nerve optogenetic stimulations in free-behaving animals[J]. BMC Biology, 19, 252(2021).

    [52] Al Abed A, Amatoury J, Khraiche M. Finite element modeling of magnitude and location of brain micromotion induced strain for intracortical implants[J]. Frontiers in Neuroscience, 15, 727715(2022).

    [53] Kim C K, Adhikari A, Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience[J]. Nature Reviews Neuroscience, 18, 222-235(2017).

    [54] Salatino J W, Ludwig K A, Kozai T D Y et al. Glial responses to implanted electrodes in the brain[J]. Nature Biomedical Engineering, 1, 862-877(2017).

    [55] Sridharan A, Rajan S D, Muthuswamy J. Long-term changes in the material properties of brain tissue at the implant-tissue interface[J]. Journal of Neural Engineering, 10, 066001(2013).

    [56] Moshayedi P, Ng G, Kwok J C F et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system[J]. Biomaterials, 35, 3919-3925(2014).

    [57] Cogan S F, Guzelian A A, Agnew W F et al. Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation[J]. Journal of Neuroscience Methods, 137, 141-150(2004).

    [58] Lago N, Cester A. Flexible and organic neural interfaces: a review[J]. Applied Sciences, 7, 1292(2017).

    [59] Song E M, Li J H, Won S M et al. Materials for flexible bioelectronic systems as chronic neural interfaces[J]. Nature Materials, 19, 590-603(2020).

    [60] Tang X, Shen H, Zhao S Y et al. Flexible brain-computer interfaces[J]. Nature Electronics, 6, 109-118(2023).

    [61] Ahmed Z, Reddy J W, Malekoshoaraie M H et al. Flexible optoelectric neural interfaces[J]. Current Opinion in Biotechnology, 72, 121-130(2021).

    [62] Nguyen J K, Park D J, Skousen J L et al. Mechanically-compliant intracortical implants reduce the neuroinflammatory response[J]. Journal of Neural Engineering, 11, 056014(2014).

    [63] Zhou Y, Gu C, Liang J Z et al. A silk-based self-adaptive flexible opto-electro neural probe[J]. Microsystems & Nanoengineering, 8, 118(2022).

    [64] Li L Z, Lu L H, Ren Y Q et al. Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe[J]. Nature Communications, 13, 839(2022).

    [65] Chen Z Q, Li L. Flexible photonic probes for new-generation brain-computer interfaces[J]. Accounts of Materials Research, 2, 315-318(2021).

    [66] Aravanis A M, Wang L P, Zhang F et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology[J]. Journal of Neural Engineering, 4, S143-S156(2007).

    [67] Xu H, Davitt K M, Dong W et al. Combining multicore imaging fiber with matrix addressable blue/green LED arrays for spatiotemporal photonic excitation at cellular level[J]. IEEE Journal of Selected Topics in Quantum Electronics, 14, 167-170(2008).

    [68] Royer S, Zemelman B V, Barbic M et al. Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal[J]. The European Journal of Neuroscience, 31, 2279-2291(2010).

    [69] Zorzos A N, Scholvin J, Boyden E S et al. Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits[J]. Optics Letters, 37, 4841-4843(2012).

    [70] Farah N, Levinsky A, Brosh I et al. Holographic fiber bundle system for patterned optogenetic activation of large-scale neuronal networks[J]. Neurophotonics, 2, 045002(2015).

    [71] Pisanello F, Sileo L, Oldenburg I A et al. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics[J]. Neuron, 82, 1245-1254(2014).

    [72] Tsakas A, Tselios C, Ampeliotis D et al. (INVITED)review of optical fiber technologies for optogenetics[J]. Results in Optics, 5, 100168(2021).

    [73] Klorig D C, Godwin D W. A magnetic rotary optical fiber connector for optogenetic experiments in freely moving animals[J]. Journal of Neuroscience Methods, 227, 132-139(2014).

    [74] Park S, Guo Y Y, Jia X T et al. One-step optogenetics with multifunctional flexible polymer fibers[J]. Nature Neuroscience, 20, 612-619(2017).

    [75] Lu C, Park S, Richner T J et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits[J]. Science Advances, 3, e1600955(2017).

    [76] Wang L L, Zhong C, Ke D N et al. Ultrasoft and highly stretchable hydrogel optical fibers for in vivo optogenetic modulations[J]. Advanced Optical Materials, 6, 1800427(2018).

    [77] Fu R X, Luo W H, Nazempour R et al. Implantable and biodegradable poly(l-lactic acid) fibers for optical neural interfaces[J]. Advanced Optical Materials, 6, 1700941(2018).

    [78] Zhang S, Wang C J, Gao H et al. A removable insertion shuttle for ultraflexible neural probe implantation with stable chronic brain electrophysiological recording[J]. Advanced Materials Interfaces, 7, 1901775(2020).

    [79] Park S, Loke G, Fink Y et al. Flexible fiber-based optoelectronics for neural interfaces[J]. Chemical Society Reviews, 48, 1826-1852(2019).

    [80] Fan B, Li W. Miniaturized optogenetic neural implants: a review[J]. Lab on a Chip, 15, 3838-3855(2015).

    [81] Grossman N, Poher V, Grubb M S et al. Multi-site optical excitation using ChR2 and micro-LED array[J]. Journal of Neural Engineering, 7, 016004(2010).

    [82] Schwaerzle M, Elmlinger P, Paul O et al. Miniaturized 3×3 optical fiber array for optogenetics with integrated 460 nm light sources and flexible electrical interconnection[C], 162-165(2015).

    [83] Mcalinden N, Cheng Y, Scharf R et al. Multisite microLED optrode array for neural interfacing[J]. Neurophotonics, 6, 035010(2019).

    [84] Kwon K Y, Lee H M, Ghovanloo M et al. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application[J]. Frontiers in systems neuroscience, 9, 69(2015).

    [85] McAlinden N, Massoubre D, Richardson E et al. Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation[J]. Optics Letters, 38, 992-994(2013).

    [86] McAlinden N, Gu E D, Dawson M D et al. Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe[J]. Frontiers in Neural Circuits, 9, 25(2015).

    [87] Guo Z J, Ji B W, Wang M H et al. A polyimide-based flexible optoelectrodes for low-noise neural recording[J]. IEEE Electron Device Letters, 40, 1190-1193(2019).

    [88] Ji B W, Ge C F, Guo Z J et al. Flexible and stretchable opto-electric neural interface for low-noise electrocorticogram recordings and neuromodulation in vivo[J]. Biosensors and Bioelectronics, 153, 112009(2020).

    [89] Fan B, Kwon K Y, Weber A J et al. An implantable, miniaturized SU-8 optical probe for optogenetics-based deep brain stimulation[C], 450-453(2014).

    [90] Cao H, Gu L, Mohanty S K et al. An integrated μLED optrode for optogenetic stimulation and electrical recording[J]. IEEE Transactions on Biomedical Engineering, 60, 225-229(2013).

    [91] Reddy J W, Kimukin I, Stewart L T et al. High density, double-sided, flexible optoelectronic neural probes with embedded μLEDs[J]. Frontiers in Neuroscience, 13, 745(2019).

    [92] Klein E, Gossler C, Paul O et al. High-density μLED-based optical cochlear implant with improved thermomechanical behavior[J]. Frontiers in Neuroscience, 12, 659(2018).

    [93] Xie Y, Wang H C, Cheng D L et al. Diamond thin films integrated with flexible substrates and their physical, chemical and biological characteristics[J]. Journal of Physics D: Applied Physics, 54, 384004(2021).

    [94] Klein E, Kaku Y M, Paul O et al. Flexible μLED-based optogenetic tool with integrated μ-lens array and conical concentrators providing light extraction improvements above 80%[C], 632-635(2019).

    [95] Liu C B, Zhang Q Y, Wang D et al. High performance, biocompatible dielectric thin-film optical filters integrated with flexible substrates and microscale optoelectronic devices[J]. Advanced Optical Materials, 6, 1800146(2018).

    [96] Gutruf P, Krishnamurthi V, Vázquez-Guardado A et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research[J]. Nature Electronics, 1, 652-660(2018).

    [97] Olivier F, Tirano S, Dupré L et al. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application[J]. Journal of Luminescence, 191, 112-116(2017).

    [98] Cho I J, Baac H W, Yoon E. A 16-site neural probe integrated with a waveguide for optical stimulation[C], 995-998(2010).

    [99] Son Y, Lee H J, Kim J et al. In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays[J]. Scientific Reports, 5, 15466(2015).

    [100] Sacher W D, Luo X S, Yang Y S et al. Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers[J]. Optics Express, 27, 37400-37418(2019).

    [101] Hight A E, Kozin E D, Darrow K et al. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant[J]. Hearing Research, 322, 235-241(2015).

    [102] Shemesh O A, Tanese D, Zampini V et al. Temporally precise single-cell-resolution optogenetics[J]. Nature Neuroscience, 20, 1796-1806(2017).

    [103] Shim E, Chen Y, Masmanidis S et al. Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications[J]. Scientific Reports, 6, 22693(2016).

    [104] Mohanty A, Li Q, Tadayon M A et al. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation[J]. Nature Biomedical Engineering, 4, 223-231(2020).

    [105] Lanzio V, Telian G, Koshelev A et al. Small footprint optoelectrodes using ring resonators for passive light localization[J]. Microsystems & Nanoengineering, 7, 40(2021).

    [106] Sacher W D, Liu X Y, Chen F D et al. Beam-steering nanophotonic phased-array neural probes[C], ATh4I.4(2019).

    [107] Chen F D, Jung Y, Xue T Y et al. Sidelobe-free beam-steering using optical phased arrays for neural probes[C], SW3B.2(2021).

    [108] Shin H, Son Y, Chae U et al. Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo[J]. Nature Communications, 10, 3777(2019).

    [109] Kampasi K, Stark E, Seymour J et al. Fiberless multicolor neural optoelectrode for in vivo circuit analysis[J]. Scientific Reports, 6, 30961(2016).

    [110] Kampasi K, English D F, Seymour J et al. Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes[J]. Microsystems & Nanoengineering, 4, 10(2018).

    [111] Nizamoglu S, Gather M C, Humar M et al. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine[J]. Nature Communications, 7, 10374(2016).

    [112] Reddy J W, Lassiter M, Chamanzar M. Parylene photonics: a flexible, broadband optical waveguide platform with integrated micromirrors for biointerfaces[J]. Microsystems & Nanoengineering, 6, 85(2020).

    [113] Helke C, Reinhardt M, Arnold M et al. On the fabrication and characterization of polymer-based waveguide probes for use in future optical cochlear implants[J]. Materials, 16, 106(2022).

    [114] Kalmykov A, Huang C J, Bliley J et al. Organ-on-e-chip: three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids[J]. Science Advances, 5, eaax0729(2019).

    [115] Singer J A, Stramm T, Fasel J et al. Flexible polymer optical waveguides for integrated optogenetic brain implants[C], 370-373(2023).

    [116] Pas J, Rutz A L, Quilichini P P et al. A bilayered PVA/PLGA-bioresorbable shuttle to improve the implantation of flexible neural probes[J]. Journal of Neural Engineering, 15, 065001(2018).

    [117] Xiang Z L, Yen S C, Xue N et al. Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle[J]. Journal of Micromechanics and Microengineering, 24, 065015(2014).

    [118] Shoffstall A J, Srinivasan S, Willis M et al. A mosquito inspired strategy to implant microprobes into the brain[J]. Scientific Reports, 8, 122(2018).

    [119] Yang X, Zhou T, Zwang T J et al. Bioinspired neuron-like electronics[J]. Nature Materials, 18, 510-517(2019).

    [120] Hong G, Fu T-M, Qiao M et al. A method for single-neuron chronic recording from the retina in awake mice[J]. Science, 360, 1447-1451(2018).

    [121] Muskovich M, Bettinger C J. Biomaterials-based electronics: polymers and interfaces for biology and medicine[J]. Advanced Healthcare Materials, 1, 248-266(2012).

    [122] Wu F, Stark E, Im M et al. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications[J]. Journal of Neural Engineering, 10, 056012(2013).

    [123] Chen S Y, Pei W H, Gui Q et al. A fiber-based implantable multi-optrode array with contiguous optical and electrical sites[J]. Journal of Neural Engineering, 10, 046020(2013).

    [124] Shi Z F, Zheng F M, Zhou Z T et al. Silk-enabled conformal multifunctional bioelectronics for investigation of spatiotemporal epileptiform activities and multimodal neural encoding/decoding[J]. Advanced Science, 6, 1801617(2019).

    [125] Sarah L, Luis H, Marleen W et al. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode[J]. Journal of Neurophysiology, 120, 149-161(2018).

    [126] Rakic A D, Djurisic A B, Elazar J M et al. Optical properties of metallic films for vertical-cavity optoelectronic devices[J]. Applied Optics, 37, 5271-5283(1998).

    [127] Xie C, Liu J, Fu T M et al. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes[J]. Nature Materials, 14, 1286-1292(2015).

    [128] Lee H, Bellamkonda R V, Sun W et al. Biomechanical analysis of silicon microelectrode-induced strain in the brain[J]. Journal of Neural Engineering, 2, 81-89(2005).

    [129] Luan L, Wei X L, Zhao Z T et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration[J]. Science Advances, 3, e1601966(2017).

    [130] Zhao Z T, Zhu H L, Li X et al. Ultraflexible electrode arrays for months-long high-density electrophysiological mapping of thousands of neurons in rodents[J]. Nature Biomedical Engineering, 7, 520-532(2023).

    [131] Guan S, Wang J, Gu X et al. Elastocapillary self-assembled neurotassels for stable neural activity recordings[J]. Science Advances, 5, eaav2842(2019).

    [132] He F, Lycke R, Ganji M et al. Ultraflexible neural electrodes for long-lasting intracortical recording[J]. iScience, 23, 101387(2020).

    [133] Canales A, Jia X T, Froriep U P et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo[J]. Nature Biotechnology, 33, 277-284(2015).

    [134] Park S, Yuk H, Zhao R K et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity[J]. Nature Communications, 12, 3435(2021).

    [135] Jeong J W, McCall J G, Shin G et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics[J]. Cell, 162, 662-674(2015).

    [136] Jackman S L, Chen C H, Chettih S N et al. Silk fibroin films facilitate single-step targeted expression of optogenetic proteins[J]. Cell Reports, 22, 3351-3361(2018).

    [137] Zou L, Tian H H, Guan S L et al. Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology[J]. Nature Communications, 12, 5871(2021).

    [138] Shin G, Gomez A M, Al-Hasani R et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics[J]. Neuron, 93, 509-521(2017).

    [139] Montgomery K L, Yeh A J, Ho J S et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice[J]. Nature Methods, 12, 969-974(2015).

    [140] Samineni V K, Mickle A D, Yoon J et al. Optogenetic silencing of nociceptive primary afferents reduces evoked and ongoing bladder pain[J]. Scientific Reports, 7, 15865(2017).

    [141] Mickle A D, Won S M, Noh K N et al. A wireless closed-loop system for optogenetic peripheral neuromodulation[J]. Nature, 565, 361-365(2019).

    [142] Shen J Y, Zhang B J. Research progress of integrated implanted biological optrode devices applied in optogenetics[J]. Semiconductor Optoelectronics, 42, 158(2021).

    [143] Li L Z, Tang G, Shi Z et al. Transfer-printed, tandem microscale light-emitting diodes for full-color displays[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e2023436118(2021).

    [144] Righini G C, Krzak J, Lukowiak A et al. From flexible electronics to flexible photonics: a brief overview[J]. Optical Materials, 115, 111011(2021).

    [145] Meng Y, Chen Y Z, Lu L H et al. Optical meta-waveguides for integrated photonics and beyond[J]. Light: Science & Applications, 10, 235(2021).

    [146] Atabaki A H, Moazeni S, Pavanello F et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J]. Nature, 556, 349-354(2018).

    [147] McManamon P F, Dorschner T A, Corkum D L et al. Optical phased array technology[J]. Proceedings of the IEEE, 84, 268-298(1996).

    [148] McGlynn E, Nabaei V, Ren E et al. The future of neuroscience: flexible and wireless implantable neural electronics[J]. Advanced Science, 8, 2002693(2021).

    [149] Li L, Lin H T, Qiao S T et al. Integrated flexible chalcogenide glass photonic devices[J]. Nature Photonics, 8, 643-649(2014).

    [150] Li L, Lin H T, Qiao S T et al. Monolithically integrated stretchable photonics[J]. Light: Science & Applications, 7, 17138(2018).

    [151] Li L, Lin H T, Huang Y Z et al. High-performance flexible waveguide-integrated photodetectors[J]. Optica, 5, 44-51(2018).

    [152] Chen Z Q, Wei M L, Sun B et al. Flexible waveguide integrated thermo-optic switch based on TiO2 platform[J]. Optics Letters, 48, 3239-3242(2023).

    [153] Chen Z Q, Wei M L et al. Efficient and compact sol-gel TiO2 thermo-optic microring resonator modulator[J]. Optical Materials Express, 12, 4061-4071(2022).

    [154] Chen Z Q, Shi Y L, Wei M L et al. A universal approach to high-index-contrast flexible integrated photonics[J]. Advanced Optical Materials, 11, 2202824(2023).

    [155] Wu L M, Yuan X X, Tang Y X et al. MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices[J]. PhotoniX, 4, 1-56(2023).

    [156] Wang Y, Lin X D, Chen X et al. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices[J]. Biomaterials, 142, 136-148(2017).

    [157] Lin X D, Wang Y, Chen X et al. Multiplexed optogenetic stimulation of neurons with spectrum-selective upconversion nanoparticles[J]. Advanced Healthcare Materials, 6, 1700446(2017).

    Tools

    Get Citation

    Copy Citation Text

    Yiheng Tang, Yang Weng, Zequn Chen, Xiaojing Li, Ke Si, Wei Gong, Hongtao Lin, Lan Li. Development and Application of Nano-Optogenetic Probes[J]. Laser & Optoelectronics Progress, 2023, 60(13): 1316001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Jun. 1, 2023

    Accepted: Jun. 21, 2023

    Published Online: Jul. 28, 2023

    The Author Email: Li Lan (lilan@westlake.edu.cn)

    DOI:10.3788/LOP231425

    Topics