Laser & Optoelectronics Progress, Volume. 60, Issue 13, 1316001(2023)

Development and Application of Nano-Optogenetic Probes

Yiheng Tang1,2, Yang Weng1,2, Zequn Chen1,2, Xiaojing Li3,4, Ke Si3,4,5, Wei Gong3,4, Hongtao Lin4,6, and Lan Li1,2、*
Author Affiliations
  • 1Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
  • 2Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
  • 3School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • 4MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Hangzhou 310058, Zhejiang, China
  • 5College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • 6College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • show less
    Figures & Tables(14)
    Different kinds of photosensitive proteins with corresponding ion flow inside the channels[2]
    Rigid optical fiber probe. (a) First successful in vivo experimental demonstration[66]; (b) a longer fiber and a shorter fiber set on the upper and lower sides of the shank, respectively[68]; (c) the use of image bundle with digital micromirror device or scanning galvanometer[69]; (d) tapered optical fiber based on the mode-division multiplexing[71]
    Flexible optical fiber probes made from different materials. (a) Hydrogel[76]; (b) poly(l-lactic acid) [77]; (c) PDMS[51]; (d) silk[63]
    Rigid μ-LED probes. (a) Sapphire as the substrate material with the optrodes coupled to an μ-LED array chip[83]; (b) the tip of each shank contained three μ-LEDs[44]
    Flexible μ-LED probes. (a) A multilayer and multifunction probe based on the PDMS substrate[22]; (b) a probe based on the Parylene C substrate[91]; (c) a multichannel optical cochlear implant based on the epoxy substrate[92]; (d) a bicolor light emission probe based on the PI substrate[64]
    Waveguide-integrated probes. (a) Y splitter, four channels[99]; (b) grating couplers as emitters, 21 channels[100]; (c) directional coupler to splitting the light, nine channels[103]; (d) thermal optical switch, reconfigurable eight channels[104]; (e) light emission via passive micro-ring resonators[105]; (f) light delivery based on the theory of wavelength division multiplexing and demultiplexing, nine channels[41]; (g) the steer of the light beam achieved by OPA technology[106]; (h) FPR used in front of the OPA design[107]; (i) optical probes with several additional functions including optical stimulation, electrical recording and drug delivery[108]; (j) bicolor light emission[109-110]; (k) the optical probe based on the flexible Parylene C/PDMS substrate with the utilisation of micromirrors[112]; (l) optical cochlear implant based on the flexible SU-8/PMMA[113]
    Integrated electrophysiological recording probes. (a) Integrated electrodes, rigid optical fiber[68]; (b) integrated electrodes, rigid waveguide-integrated probe[122]; (c) integrated conductive cladding of the core, rigid optical fiber[123]; (d) conductive cladding attached to the optical waveguide, rigid μ-LED[84]; (e) flexible electrodes array attached to the silk fiber, flexible optical fiber[63];(f) light emission achieved through micromirrors without illuminating the electrodes, flexible waveguide-integrated[112]
    Integrated probes with delivery functions of biological and chemical signals. (a) Hollow struture designed to be microfluidics channels and formed via the thermal drawing process, flexible optical fiber[133]; (b) microfluidic and other functional channels surrounded by hydrogel, flexible optical fiber[134]; (c) microfludic channels formed via the sandwiched two PDMS layers, flexible μ-LED[135]
    Integrated wireless probes. (a) The realisation of power supply through external coil antenna, flexible μ-LED[138]; (b) a probe with a microcontroller and a DAC module, flexible μ-LED[96]; (c) bluetooth-enabled probe, flexible μ-LED[141]
    • Table 1. Several kinds of rigid optical fiber probes and their parameters

      View table

      Table 1. Several kinds of rigid optical fiber probes and their parameters

      Year[Ref.]Material(refractive index n /numerical aperture NA)Dimension

      Output light

      intensity /(mW·mm-1

      Number of channels

      Working wavelength

      λ /nm

      Experiment

      condition

      200766Silica(NA=0.37)200 μm(core diameter)3801473In vivo
      200867Silica/silicone resin

      28 μm(core diameter),

      750 μm(total diameter)

      --450-492In vivo
      201068NA=0.13

      3.5 μm(core diameter),

      125 μm(fiber diameter),

      5-20 μm(after etching fiber diameter),

      250 μm(shank separation)

      >1501,2473,561In vivo
      201369

      nSiON=1.53,

      nSiO2=1.46

      8 μm(core diameter),

      9.5 mm(bundle diameter),

      9 μm×60 μm(output aperture)

      148±56,

      200

      -473-
      201570NA=0.6470 μm(core diameter)12-473In vitro
      201471

      n1=1.464,

      n2=1.447

      50 μm(core diameter),

      125 μm(fiber diameter),

      25 μm×25 μm(window size)

      >1602,3,7473,593In vivo
    • Table 2. Several kinds of flexible optical fiber probes and their parameters

      View table

      Table 2. Several kinds of flexible optical fiber probes and their parameters

      Year[Ref.]Material(refractive index n/numerical aperture NA)

      Stiffness

      (Young’s modulus)

      Dimension

      (fiber diameter /μm)

      Working wavelength λ /nm

      Experiment

      condition

      201876nalginate-PAAm hydrogel=1.3454-1.353348.234-90.849 kPa75,150,300472In vivo
      201877npoly(l-lactic acid)=1.47

      3-5 GPa,

      1.5×104 N /m

      (bending stiffness)

      220473,488

      In vitro,

      In vivo

      202151

      nPDMS=1.4109,

      npoly(vinyl alcohol)/poly(acrylic acid)hydrogel=1.3440

      1.22 MPa200472In vivo
      202263Silk3.53-38.7 MPa200465

      In vitro,

      in vivo

    • Table 3. Several kinds of rigid μ-LED probes and their parameters

      View table

      Table 3. Several kinds of rigid μ-LED probes and their parameters

      Year[Ref.]Material(LED/wafer)Dimension

      Output light

      intensity /(mW·mm-1

      Number of channels

      Working wavelength

      λ /nm

      Light delivery

      efficiency /%

      Experiment

      condition

      201081GaN/sapphire

      20 μm(LED diameter),

      50 μm(LED separation)

      25064×64470±22-In vitro
      201482

      InGaN/SiC

      glass(optical fiber)

      105 μm(core diameter),

      125 μm(fiber diameter)

      0.89-1.283×3456

      0.88

      1.27

      -
      201983GaN/sapphire

      80 μm×80 μm(LED size),

      1.5 mm(needle length),

      75 μm×75 μm(needle base size),

      400 μm(needle pitch)

      >80181450-In vivo
      201385GaN/sapphire

      1.3 mm×80 μm(tip size),

      40 μm(LED diameter),

      250 μm(LED separation)

      350,6005×1

      446±17,

      443±21

      2-
      201544GaN/Si

      10 μm×15 μm(LED size),

      60 μm(LED separation),

      250 μm(shank separation),

      70 μm×5 mm(shank width×shank length)

      3534×34600.87In vivo
    • Table 4. Several kinds of flexible μ-LED probes and their parameters

      View table

      Table 4. Several kinds of flexible μ-LED probes and their parameters

      Year[Ref.]Material(LED/substrate)Dimension

      Output light

      Intensity /(mW·mm-1

      Number of channels

      Working wavelength

      λ /nm

      Light

      delivery

      efficiency /%

      Experiment

      condition

      201322GaN/PDMS

      50 μm×50 μm(LED size),

      20 μm(probe thickness),

      400 μm(probe width)

      17.7,

      23.5

      4×1450-In vivo
      201489-/SU-8

      0.55 mm×0.29 mm×0.1 mm(LED size),

      4.2 mm(shank length),

      0.86 mm(shank width),

      0.28 mm(shank thickness)

      0.81450-460-In vivo
      201290InGaN/PI

      1 mm×0.6 mm×0.2 mm(LED size),

      12 mm(shank length),

      900 μm(shank width)

      0.71465-In vivo
      201991GaN/Parylene C

      22 μm×22 μm(LED size),

      1 mm(shank width)

      >1324456.5In vitro
      201892GaN/epoxy

      50 μm×50 μm(LED size),

      1.5 cm(shank length),

      350 μm(shank width),

      26 μm(shank thickness)

      407144462--
      202264InGaP+InGaN/PI

      125 μm×180 μm(LED size),

      120 μm(shank thickness),

      320 μm(shank width)

      50,

      200

      1

      630,

      480

      -In vitro,in vivo
    • Table 5. Several kinds of rigid waveguide-integrated probes and their parameters

      View table

      Table 5. Several kinds of rigid waveguide-integrated probes and their parameters

      Year[Ref.]Material(waveguide/ substrate)Dimension

      Output light

      Intensity /(mW·mm-1

      Number of channels

      Working wavelength

      λ /nm

      Light

      delivery

      efficiency /%

      Experiment

      condition

      201098SU-8/Si

      5 μm(waveguide thickness),

      80 μm(shank width),

      12 μm(shank thickness)

      >60147512.4-
      201499SU-8/Si

      30 μm×20 μm(waveguide cross-section),

      86 μm(shank width),

      30 μm(shank thickness)

      500-58344752In vivo
      2019100SiN/Si

      340 nm×135 nm(waveguide cross-section),

      4 mm(shank length),

      100 μm(shank width),

      92 μm(shank thickness),

      10 μm×20 μm(grating size)

      -21430-645--
      2016103SiN/Si

      400 nm×200 nm(waveguide cross-section),

      0.7 cm(shank length),

      90 μm(shank width),

      20 μm×15 μm(grating size)

      6303×347324.4-
      2020104SiN/Si

      350 nm×200 nm(waveguide cross-section),

      250 μm×100 μm(tip size),

      20 μm×20 μm(grating size)

      154,8473-In vivo
      2021105SiN/Si

      250 nm×160 nm(waveguide cross-section),

      45 nm×20 μm(tip size),

      5 μm×10 μm(grating size)

      1005449-452.5~0.375In vitro,invivo
      201741SiN/Si

      240 nm×200 nm(waveguide cross-section),

      20 μm(shank width),

      18 μm(shank thickness),

      10 μm×10 μm(grating size)

      -9473-In vivo
      2019106SiN/Si

      240 nm×200 nm(waveguide cross-section),

      3 mm(shank length),

      50 μm(shank width),

      18 μm(shank thickness),

      30 μm×10 μm(grating size)

      -4×4484.3-491-In vitro
      2021107SiN/Si

      200 nm(waveguide thickness),

      4 mm(shank length),

      100 μm(probe thickness),

      150 μm×100 μm(slab size)

      -4460-492--
      2019108SU-8/Si

      40 μm×15 μm(waveguide cross-section),

      128 μm(shank width),

      40 μm(shank thickness)

      16714731.4In vivo
      2016109SiON/Si30 μm×7 μm(waveguide cross-section)1928,29051405,6356.75,10.2In vivo
      2018110SiON/Si

      30 μm×7 μm(waveguide cross-section),

      70 μm(shank width),

      22 μm(shank thickness)

      1714,25234405,6355,8.2In vivo
    Tools

    Get Citation

    Copy Citation Text

    Yiheng Tang, Yang Weng, Zequn Chen, Xiaojing Li, Ke Si, Wei Gong, Hongtao Lin, Lan Li. Development and Application of Nano-Optogenetic Probes[J]. Laser & Optoelectronics Progress, 2023, 60(13): 1316001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Jun. 1, 2023

    Accepted: Jun. 21, 2023

    Published Online: Jul. 28, 2023

    The Author Email: Li Lan (lilan@westlake.edu.cn)

    DOI:10.3788/LOP231425

    Topics