Journal of Inorganic Materials, Volume. 39, Issue 8, 911(2024)

High Stability/Catalytic Activity Co-based Perovskite as SOFC Anode: In-situ Preparation by Fuel Reducing Method

Jianlong PAN, Guanjun MA, Lemei SONG, Yu HUAN*, and Tao WEI*
Author Affiliations
  • School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
  • show less
    References(35)

    [1] DWIVEDI S. Solid oxide fuel cell: materials for anode, cathode and electrolyte[J]. International Journal of Hydrogen Energy(2020).

    [2] PAN K, HUSSAIN A M, HUANG Y L et al. High performance SrFe0.2Co0.4Mo0.4O3-δ ceramic anode supported low-temperature SOFCs[J]. Journal of the Electrochemical Society(2021).

    [3] BILAL H M, MOTOLA M, QAYYUM S et al. Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion[J]. Chemical Engineering Journal(2022).

    [4] ZHOU S M, MIAO X B, ZHAO X et al. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition[J]. Nature Communications(2016).

    [5] NIU B, JIN F, FU R et al. Pd-impregnated Sr1.9VMoO6-δ double perovskite as an efficient and stable anode for solid-oxide fuel cells operating on sulfur-containing syngas[J]. Electrochimica Acta(2018).

    [6] ZHENG K, ŚWIERCZEK K. Physicochemical properties of rock salt-type ordered Sr2MMoO6 (M=Mg, Mn, Fe, Co, Ni) double perovskites[J]. Journal of the European Ceramic Society(2014).

    [7] ZHANG Q, WEI T, HUANG Y H. Electrochemical performance of double-perovskite Ba2MMoO6 (M=Fe, Co, Mn, Ni) anode materials for solid oxide fuel cells[J]. Journal of Power Sources(2012).

    [8] SUBOTIĆ V, BALDINELLI A, BARELLI L et al. Applicability of the SOFC technology for coupling with biomass-gasifier systems: short- and long-term experimental study on SOFC performance and degradation behaviour[J]. Applied Energy(2019).

    [9] SHIRATORI Y. YSZ-MgO composite electrolyte with adjusted thermal expansion coefficient to other SOFC components[J]. Solid State Ionics(2003).

    [10] SUN K, ZHANG J, JIANG T et al. Flash-sintering and characterization of La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolytes for solid oxide fuel cells[J]. Electrochimica Acta(2016).

    [11] ZHANG J, PAYDAR S, AKBAR N et al. Electrical properties of Ni-doped Sm2O3 electrolyte[J]. International Journal of Hydrogen Energy(2021).

    [12] HOU N, YAO T, LI P et al. A-site ordered double perovskite with in situ exsolved core-shell nanoparticles as anode for solid oxide fuel cells[J]. ACS Applied Materials & Interfaces(2019).

    [13] XU K, ZHANG H, DENG W et al. Self-hydrating of a ceria-based catalyst enables efficient operation of solid oxide fuel cells on liquid fuels[J]. Science Bulletin(2023).

    [14] SONG L, CHEN D, PAN J et al. B-site super-excess design Sr2V0.4Fe0.9Mo0.7O6-δ-Ni0.4 as a highly active and redox-stable solid oxide fuel cell anode[J]. ACS Applied Materials & Interfaces(2023).

    [15] YAREMCHENKO A A, BRINKMANN B, JANSSEN R et al. Electrical conductivity, thermal expansion and stability of Y- and Al-substituted SrVO3 as prospective SOFC anode material[J]. Solid State Ionics(2013).

    [16] WANG F Y, ZHONG G B, LUO S et al. Porous Sr2MgMo1-xVxO6-δ ceramics as anode materials for SOFCs using biogas fuel[J]. Catalysis Communications(2015).

    [17] DOS SANTOS-GÓMEZ L, LEÓN-REINA L, PORRAS-VÁZQUEZ J M et al. Chemical stability and compatibility of double perovskite anode materials for SOFCs[J]. Solid State Ionics(2013).

    [18] MA G J, CHEN D Z, JI S J et al. Medium-entropy SrV1/3Fe1/3Mo1/3O3 with high conductivity and strong stability as SOFCs- high-performance anode[J]. Materials(2022).

    [19] DEWA M, YU W, DALE N et al. Recent progress in integration of reforming catalyst on metal-supported SOFC for hydrocarbon and logistic fuels[J]. International Journal of Hydrogen Energy(2021).

    [20] FARES A, BARAMA A, BARAMA S et al. Synthesis and characterization of Ba0.5Sr0.5NixCo0.8-xFe0.2O3-δ (x=0 and 0.2) perovskites as electro-catalysts for methanol oxidation in alkaline media[J]. Electroanalysis(2017).

    [21] XIA W W, LI Q, SUN L P et al. Electrochemical performance of Sn-doped Bi0.5Sr0.5FeO3-δ perovskite as cathode electrocatalyst for solid oxide fuel cells[J]. Journal of Alloys and Compounds(2020).

    [22] LI K, LI X, LI J et al. Structural stability of Ni-Fe supported solid oxide fuel cells based on stress analysis[J]. Journal of Inorganic Materials(2019).

    [23] MORI M, SAMMES N M J S S I. Sintering and thermal expansion characterization of Al-doped and Co-doped lanthanum strontium chromites synthesized by the Pechini method[J]. Solid State Ionics(2002).

    [24] LI Y, YIN B, FAN Y et al. Achieving high mechanical-strength CH4-based SOFCs by low-temperature sintering (1100 ℃)[J]. International Journal of Hydrogen Energy(2020).

    [25] FLORES-LASLUISA J X, HUERTA F, CAZORLA-AMORÓS D et al. Structural and morphological alterations induced by cobalt substitution in LaMnO perovskites[J]. Journal of Colloid and Interface Science(2019).

    [26] QIN M X, XIAO Y, YANG H Y et al. Ru/Nb co-doped perovskite anode: achieving good coking resistance in hydrocarbon fuels via core-shell nanocatalysts exsolution[J]. Applied Catalysis B-Environmental(2021).

    [27] LING Y H, LI X W, CHUANG T C et al. Double perovskite Sr2CoFeO5+δ: preparation and its performance as cathode material for intermediate-temperature solid oxide fuel cells[J]. Journal of Inorganic Materials(2023).

    [28] XU C M, SUN W, REN R Z et al. A highly active and carbon-tolerant anode decorated with grown cobalt nano-catalyst for intermediate-temperature solid oxide fuel cells[J]. Applied Catalysis B-Environmental(2021).

    [29] ZHAO H L, XU N S, CHENG Y F et al. Investigation of mixed conductor BaCo0.7Fe0.3-xYxO3-δ with high oxygen permeability[J]. Journal of Physical Chemistry C(2010).

    [30] HUAN Y, LI Y, YIN B et al. High conductive and long-term phase stable anode materials for SOFCs: A2FeMoO6 (A = Ca, Sr, Ba)[J]. Journal of Power Sources(2017).

    [31] SEREDA V V, TSVETKOV D S, SEDNEV A L et al. Thermodynamics of Sr2NiMoO6 and Sr2CoMoO6 and their stability under reducing conditions[J]. Physical Chemistry Chemical Physics(2018).

    [32] ALVAREZ M, LÓPEZ T, ODRIOZOLA J A et al. 2, 4-Dichlorophenoxyacetic acid (2,4-D) photodegradation using an Mn+/ZrO2 photocatalyst: XPS, UV-Vis, XRD characterization[J]. Applied Catalysis B: Environmental(2007).

    [33] LUO L H, HU J X, CHENG L, XU X et al. Performance of the composite cathode Ba0.5Sr0.5Co0.8Fe0.2O3-Ce0.9Gd0.1O2 for medium- low temperature solid oxide fuel cell[J]. Journal of Inorganic Materials(2018).

    [34] XIA J, WANG C, WANG X F et al. A perspective on DRT applications for the analysis of solid oxide cell electrodes[J]. Electrochimica Acta(2020).

    [35] SHI N, SU F, HUAN D et al. Performance and DRT analysis of P-SOFCs fabricated using new phase inversion combined tape casting technology[J]. Journal of Materials Chemistry A(2017).

    Tools

    Get Citation

    Copy Citation Text

    Jianlong PAN, Guanjun MA, Lemei SONG, Yu HUAN, Tao WEI. High Stability/Catalytic Activity Co-based Perovskite as SOFC Anode: In-situ Preparation by Fuel Reducing Method [J]. Journal of Inorganic Materials, 2024, 39(8): 911

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 11, 2024

    Accepted: --

    Published Online: Dec. 12, 2024

    The Author Email: Yu HUAN (mse_huany@ujn.edu.cn), Tao WEI (mse_weit@ujn.edu.cn)

    DOI:10.15541/jim20240025

    Topics