Journal of Applied Optics, Volume. 43, Issue 1, 67(2022)
Parts recognition method based on improved Faster RCNN
[1] ALDRICH C, MARAIS C, SHEAN B J, et al. Online monitoringand control of froth flotation systems with machine vision: a review[J]. International Journal of Mineral Processing, 96, 1-13(2010).
[4] [4] LI Shengli . Research on wkpiece recongnition loction technology based on binocular stereo vision[D]. Harbin: Harbin Institute of Technology, 2016.
[5] RUTA A, LI Y, LIU X. Real-time traffic sign recognitionfrom video by class-specific discriminative features[J]. Pattern Recognition, 43, 416-430(2010).
[6] KHAN J F, BHUIYAN S M A, ADHAMI R R. Image seg-mentation and shape analysis for road-sign detection[J]. IEEE Transactions on Intelligent Transportation Systems, 12, 83-96(2010).
[7] [7] HUANG Shan. Research on robot arm sting system based on machine vision[D]. Zhenjiang: Jiangsu University of Science Technology, 2016.
[8] OTSU N. A threshold selection method from gray-level histograms[J]. Automatica, 11, 23-27(1975).
[9] HINTON G E, OSINDERO S, THE Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 18, 1527-1554(2006).
[10] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).
[11] [11] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies f accurate object detection semantic segmentation[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition. New Yk: IEEE, 2014: 580587.
[12] [12] GIRSHICK R. Faster RCNN[C]2015 IEEE International Conference on Computer Vision(ICCV). New Yk: IEEE, 2015: 14401448.
[13] REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[14] UIJLINGS J R R, VAN DE SANDE K E A, SMEULDERS A W M, et al. Selective search for object recongnition[J]. International Journal of Computer Vision, 104, 54-171(2013).
[15] [15] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learing f image recongnition[C]2016 IEEE Conference on Computer Vision Pattern Recongnition(CVPR). New Yk: IEEE, 2016: 770778.
Get Citation
Copy Citation Text
Yi WANG, Zhengdong MA, Guanglin DONG. Parts recognition method based on improved Faster RCNN[J]. Journal of Applied Optics, 2022, 43(1): 67
Category: OE INFORMATION ACQUISITION AND PROCESSING
Received: Jul. 22, 2021
Accepted: --
Published Online: Mar. 7, 2022
The Author Email: Zhengdong MA (309113885@qq.com)