Journal of Applied Optics, Volume. 43, Issue 1, 67(2022)

Parts recognition method based on improved Faster RCNN

Yi WANG... Zhengdong MA* and Guanglin DONG |Show fewer author(s)
Author Affiliations
  • College of Electrical Engineering, North China University of Science and Technology, Tangshan 063200, China
  • show less
    Figures & Tables(13)
    Structure diagram of Faster RCNN
    Algorithm model diagram of VGG16
    Structure diagram of residual learning
    Original structure diagram of RPN
    Comparison of NMS algorithm and Soft-NMS algorithm
    Structure diagram of improved model
    Annotation diagram of data set
    Diagram of test results
    • Table 1. ResNet101 network parameters

      View table
      View in Article

      Table 1. ResNet101 network parameters

      卷积类型输出尺寸/像素卷积尺寸与特征通道数
      卷积层122×1227×7,64,步长=2
      池化层56×563×3,64,步长=2
      卷积块56×56[1×1,64;3×3,64;1×1,256]×3
      卷积块28×28[1×1,128;3×3,128;1×1,512]×4
      卷积块14×14[1×1,256;3×3,256;1×1,1024]×23
      卷积块7×7[1×1,512;3×3,512;1×1,2048]×3
    • Table 2. Experimental comparison of feature detection network

      View table
      View in Article

      Table 2. Experimental comparison of feature detection network

      特征网络召回率/%准确率/%单张检测时间/s
      VGG1690.394.50.47
      ResNet10191.896.30.4
    • Table 3. Experimental comparison of networks with different characteristics

      View table
      View in Article

      Table 3. Experimental comparison of networks with different characteristics

      特征网络召回率/%准确率/%
      VGG1686.391.2
      ZF-Net85.688.8
      ResNet5089.292.3
      ResNet10191.794.2
    • Table 4. Model test results of different strategies

      View table
      View in Article

      Table 4. Model test results of different strategies

      策略特征网络RPN改进非极大 值抑制 多尺 度训练 召回率/%准确率/%
      1VGG1688.290.5
      2ResNet10188.991.6
      3ResNet10190.693.7
      4ResNet10190.994.0
      5ResNet10190.393.5
      6ResNet10192.395.4
      7ResNet10192.896.3
    • Table 5. Experimental results of different models

      View table
      View in Article

      Table 5. Experimental results of different models

      网络模型召回率/%准确率/%识别时间/s
      SSD85.788.60.71
      YOLOv389.591.30.45
      Faster RCNN89.391.50.61
      本文方法93.296.10.65
    Tools

    Get Citation

    Copy Citation Text

    Yi WANG, Zhengdong MA, Guanglin DONG. Parts recognition method based on improved Faster RCNN[J]. Journal of Applied Optics, 2022, 43(1): 67

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: OE INFORMATION ACQUISITION AND PROCESSING

    Received: Jul. 22, 2021

    Accepted: --

    Published Online: Mar. 7, 2022

    The Author Email: MA Zhengdong (309113885@qq.com)

    DOI:10.5768/JAO202243.0102003

    Topics