Optics and Precision Engineering, Volume. 32, Issue 2, 301(2024)

Flue-cured tobacco leaf grade detection through multi-receptive field features fusing adaptively and dynamic loss adjustment

Zifen HE, Yang LUO, Yinhui ZHANG*, Guangchen CHEN, Dongdong CHEN, and Lin XU
Author Affiliations
  • Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming650500, China
  • show less
    References(33)

    [1] [1] 国家统计局.中国统计年鉴[M]. 北京:中国统计出版社, 2021.National Bureau of Statistics. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2021. (in Chinese)

    [2] [2] 苏明秋. 基于烟叶图像的参数精确提取和分级识别系统研究与实现[D]. 成都: 电子科技大学, 2020.SUM Q. Research and Implementation of Parameter Extraction and Classification Recognition System Based on Tobacco Image[D]. Chengdu: University of Electronic Science and Technology of China, 2020. (in Chinese)

    [3] J ZHANG, S SOKHANSANJ, S WU et al. A trainable grading system for tobacco leaves. Computers and Electronics in Agriculture, 16, 231-244(1997).

    [4] G TATTERSFIELD, K FORBES. Classification of tobacco leaves by color and plant position, 11(1998).

    [5] L Q HAN. Recognition of the Part of Growth of flue-cured tobacco leaves based on support vector machine, 3624-3627(2008).

    [6] M C A MARCELO, F F SOARES, J A ARDILA et al. Fast inline tobacco classification by near-infrared hyperspectral imaging and support vector machine-discriminant analysis. Analytical Methods, 11, 1966-1975(2019).

    [7] [7] 林相泽, 张俊媛, 徐啸, 等. 基于字典学习与SSD的不完整昆虫图像稻飞虱识别分类[J]. 农业机械学报, 2021, 52(9): 165-171. doi: 10.6041/j.issn.1000-1298.2021.09.019LINX Z, ZHANGJ Y, XUX, et al. Recognition and classification of rice planthopper with incomplete image information based on dictionary learning and SSD[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 165-171.(in Chinese). doi: 10.6041/j.issn.1000-1298.2021.09.019

    [8] X C ZHANG, Z M WU, C M CAO et al. Design and operation of a deep-learning-based fresh tea-leaf sorting robot. Computers and Electronics in Agriculture, 206, 107664(2023).

    [9] Y Y SHANG, X S XU, Y T JIAO et al. Using lightweight deep learning algorithm for real-time detection of apple flowers in natural environments. Computers and Electronics in Agriculture, 207, 107765(2023).

    [10] [10] 曾祥云. 一个基于深度学习的烤烟分级系统的设计与实现[D]. 南京: 东南大学, 2017: 5-7.ZENGX Y. Design and Implementation of a Flue-Cured Tobacco Classification System Based on Deep Learning[D].Nanjing: Southeast University, 2017: 5-7.(in Chinese)

    [11] S K DASARI, V PRASAD. A novel and proposed comprehensive methodology using deep convolutional neural networks for flue cured tobacco leaves classification. International Journal of Information Technology, 11, 107-117(2019).

    [12] D D CHEN, Y H ZHANG, Z F HE et al. Feature-reinforced dual-encoder aggregation network for flue-cured tobacco grading. Computers and Electronics in Agriculture, 210, 107887(2023).

    [13] M Y LU, C WANG, W B WU et al. Intelligent grading of tobacco leaves using an improved bilinear convolutional neural network. IEEE Access, 11, 68153-68170(2023).

    [14] [14] 乔健, 陈能达, 伍雁雄, 等. 融合注意力机制的金属锅圆柱表面缺陷检测[J]. 光学 精密工程, 2023, 31(3): 404-416. doi: 10.37188/OPE.20233103.0404QIAOJ, CHENN D, WUY X, et al. Defect detection of cylindrical surface of metal pot combining attention mechanism[J]. Opt. Precision Eng., 2023, 31(3): 404-416.(in Chinese). doi: 10.37188/OPE.20233103.0404

    [15] [15] 郝帅, 何田, 马旭, 等. 动态特征优化机制下的跨尺度红外行人检测[J]. 光学 精密工程, 2022, 30(19): 2390-2403. doi: 10.37188/OPE.20223019.2390HAOS, HET, MAX, et al. Cross-scale infrared pedestrian detection based on dynamic feature optimization mechanism[J]. Opt. Precision Eng., 2022, 30(19): 2390-2403.(in Chinese). doi: 10.37188/OPE.20223019.2390

    [16] [16] 郝帅, 张旭, 马旭, 等. 基于CBAM-YOLOv5的煤矿输送带异物检测[J]. 煤炭学报, 2022, 47(11): 4147-4156.HAOS, ZHANGX, MAX, et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society, 2022, 47(11): 4147-4156.(in Chinese)

    [17] C Y WANG, H Y MARK LIAO, Y H WU et al. CSPNet: a new backbone that can enhance learning capability of CNN, 1571-1580(2020).

    [18] K HAN, Y H WANG, Q TIAN et al. GhostNet: more features from cheap operations, 1577-1586(2020).

    [21] X Y ZHANG, X Y ZHOU, M X LIN et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices, 6848-6856(2018).

    [22] S Q REN, K M HE, R GIRSHICK et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [23] Y WU, Y P CHEN, L YUAN et al. Rethinking classification and localization for object detection, 10183-10192(2020).

    [24] H K ZHANG, H CHANG, B P MA et al. Dynamic R-CNN Towards High Quality Object Detection via Dynamic Training. Computer Vision – ECCV 2020, 260-275(2020).

    [25] J Q WANG, W W ZHANG, Y H CAO et al. Side-Aware Boundary Localization for More Precise Object Detection. Computer Vision – ECCV 2020, 403-419(2020).

    [26] C J FENG, Y J ZHONG, Y GAO et al. TOOD: task-aligned one-stage object detection, 3490-3499(2021).

    [27] P Z SUN, R F ZHANG, Y JIANG et al. Sparse R-CNN: end-to-end object detection with learnable proposals, 14449-14458(2021).

    [30] E KIZILAY, İ AYDIN. A YOLOR based visual detection of amateur drones, 1446-1449(2022).

    [31] Y M FANG, X X GUO, K CHEN et al. Accurate and automated detection of surface knots on sawn timbers using YOLO-V5 model. BioResources, 16, 5390-5406(2021).

    Tools

    Get Citation

    Copy Citation Text

    Zifen HE, Yang LUO, Yinhui ZHANG, Guangchen CHEN, Dongdong CHEN, Lin XU. Flue-cured tobacco leaf grade detection through multi-receptive field features fusing adaptively and dynamic loss adjustment[J]. Optics and Precision Engineering, 2024, 32(2): 301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 19, 2023

    Accepted: --

    Published Online: Apr. 2, 2024

    The Author Email: ZHANG Yinhui (zyhhzf1998@163.com)

    DOI:10.37188/OPE.20243202.0301

    Topics