Optics and Precision Engineering, Volume. 32, Issue 2, 301(2024)

Flue-cured tobacco leaf grade detection through multi-receptive field features fusing adaptively and dynamic loss adjustment

Zifen HE, Yang LUO, Yinhui ZHANG*, Guangchen CHEN, Dongdong CHEN, and Lin XU
Author Affiliations
  • Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming650500, China
  • show less
    Figures & Tables(17)
    FTGDNet network structure
    EVCB module sructure
    Comparison of four MRFA structures
    AFF mechanism
    Fitting result of real box and prediction box
    Intelligent grading equipment 5XYZ-9C
    Flue-cured tobacco leaves in FTLGD
    Change curves of Loss value in training process
    Change curves of mAP value in training process
    Test result visualization
    Visualization of FTGDNet and YOLOv5 feature extraction process
    • Table 1. Backbone network comparison study

      View table
      View in Article

      Table 1. Backbone network comparison study

      ModuleFLOPs/GParameters/MmAP/%Inference time/ms
      ValTest
      ShuffleNet9.55.056.051.86.0
      GhostNet11.25.759.555.56.3
      CSPNet16.47.178.875.77.0
      CSPNet+ShuffleNet18.17.777.377.09.0
      CSPNet+GhostNet19.48.083.581.29.3
    • Table 2. Module ablation study

      View table
      View in Article

      Table 2. Module ablation study

      ModuleEVCBMRFA_dMCIoU_Loss

      FLOPs

      /G

      Parameters

      /M

      mAP/%Inference time/ms
      ValTest
      Baseline×××19.48.083.581.29.3
      Baseline+EVCB××21.510.886.682.210.9
      Baseline+EVCB+MRFA_d×22.912.489.285.312.6
      Baseline+EVCB+MRFA_d+MCIoU_Loss22.912.490.087.412.6
    • Table 3. Effect comparison of bottleneck module

      View table
      View in Article

      Table 3. Effect comparison of bottleneck module

      ModuleFLOPs/GParameters/MmAP/%Inference time/ms
      ValTest
      Bottleneck19.58.281.581.49.4
      BottleneckCSP19.48.182.680.69.4
      C319.48.083.581.29.3
      EVCB21.510.886.682.210.9
    • Table 4. Performance comparison of four MRFA structures

      View table
      View in Article

      Table 4. Performance comparison of four MRFA structures

      ModuleFLOPs/GParameters/MmAP/%Inference time/ms
      ValTest
      MRFA_a22.812.487.184.412.1
      MRFA_b22.812.488.683.712.3
      MRFA_c22.812.488.885.012.3
      MRFA_d22.912.489.285.312.6
    • Table 5. Performance comparison of different Loss functions

      View table
      View in Article

      Table 5. Performance comparison of different Loss functions

      LossmAP/%
      ValTest
      GIoU_Loss85.982.4
      DIoU_Loss87.784.8
      SIoU_Loss88.285.3
      CIoU_Loss89.285.3
      MCIoU_Loss90.087.4
    • Table 6. Comparison of model effects

      View table
      View in Article

      Table 6. Comparison of model effects

      ModuleFLOPs/GParameters/MmAP/%Inference time/ms
      ValTest
      TOOD181.031.869.268.563.3
      Faster R-CNN206.741.272.171.362.5
      Sparse R-CNN150.0106.077.474.758.5
      Double_head R-CNN480.946.879.178.2122.0
      Dynamic R-CNN206.741.282.680.964.9
      SOBL413.371.386.285.7204.1
      YOLOx-Tiny19.05.462.361.213.1
      YOLOx33.38.981.778.224.6
      YOLOv3-Tiny12.98.650.849.13.4
      YOLOv3154.961.582.479.727.7
      YOLOr_CSP119.292.574.768.213.4
      YOLOr_CSPx225.396.474.567.125.4
      YOLOv5n4.21.877.773.15.4
      YOLOv5s16.47.178.875.77.0
      YOLOv5m48.120.984.183.013.0
      YOLOv6n11.44.777.977.03.6
      YOLOv6s30.513.188.085.712.7
      YOLOv6m72.228.389.585.815.7
      YOLOv7-Tiny13.26.086.983.94.7
      YOLOv7103.536.588.284.212.8
      FTGDNet22.912.490.087.412.6
    Tools

    Get Citation

    Copy Citation Text

    Zifen HE, Yang LUO, Yinhui ZHANG, Guangchen CHEN, Dongdong CHEN, Lin XU. Flue-cured tobacco leaf grade detection through multi-receptive field features fusing adaptively and dynamic loss adjustment[J]. Optics and Precision Engineering, 2024, 32(2): 301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 19, 2023

    Accepted: --

    Published Online: Apr. 2, 2024

    The Author Email: ZHANG Yinhui (zyhhzf1998@163.com)

    DOI:10.37188/OPE.20243202.0301

    Topics