Bulletin of the Chinese Ceramic Society, Volume. 41, Issue 9, 3259(2022)

Research Progress on Oxygen Control Technology During Preparation of Czochralski Single-Crystal Silicon

ZHANG Mengyu1...2,*, LI Tai1,2, DU Shanlin1,2, HUANG Zhenling1,2, ZHAO Liang1,2, LYU Guoqiang1,2, and MA Wenhui12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(52)

    [4] [4] DASH W C. Silicon crystals free of dislocations[J]. Journal of Applied Physics, 1958, 29(4): 736-737.

    [5] [5] HURLE D T J. Control of diameter in Czochralski and related crystal growth techniques[J]. Journal of Crystal Growth, 1977, 42: 473-482.

    [6] [6] VORONKOV V V. The mechanism of swirl defects formation in silicon[J]. Journal of Crystal Growth, 1982, 59(3): 625-643.

    [7] [7] SERIES R W, HURLE D T J. The use of magnetic fields in semiconductor crystal growth[J]. Journal of Crystal Growth, 1991, 113(1/2): 305-328.

    [8] [8] PUZANOV N I, EIDENZON A M, PUZANOV D N. Modelling microdefect distribution in dislocation-free Si crystals grown from the melt[J]. Journal of Crystal Growth, 1997, 178(4): 468-478.

    [9] [9] KANDA I, SUZUKI T, KOJIMA K. Influence of crucible and crystal rotation on oxygen-concentration distribution in large-diameter silicon single crystals[J]. Journal of Crystal Growth, 1996, 166(1/2/3/4): 669-674.

    [10] [10] HOSHIKAWA K, HUANG X M. Oxygen transportation during Czochralski silicon crystal growth[J]. Materials Science and Engineering: B, 2000, 72(2/3): 73-79.

    [11] [11] LUO J P, ZHOU C Y, LI Q H, et al. Diffusion coefficients of carbon, oxygen and nitrogen in silicon melt[J]. Journal of Crystal Growth, 2022, 580: 126476.

    [12] [12] BOND W L, KAISER W. Interstitial versus substitutional oxygen in silicon[J]. Journal of Physics and Chemistry of Solids, 1960, 16(1/2): 44-45.

    [13] [13] ONO T, SUGIMURA W, KIHARA T, et al. Wafer strength and slip generation behavior in 300 mm wafers[J]. ECS Transactions, 2006, 2(2): 109-122.

    [14] [14] ZENG Z D, MA X Y, CHEN J H, et al. Effect of oxygen precipitates on dislocation motion in Czochralski silicon[J]. Journal of Crystal Growth, 2010, 312(2): 169-173.

    [16] [16] FUKUSHIMA W, HARADA H, MIYAMURA Y, et al. Effect of oxygen on dislocation multiplication in silicon crystals[J]. Journal of Crystal Growth, 2018, 486: 45-49.

    [17] [17] BINNS M J, KEARNS J, GOOD E A. Impact of oxygen-related defects on lifetime degradation in N-type CCZ/CZ mono-crystalline silicon during cell processing[J]. ECS Transactions, 2014, 60(1): 1233-1238.

    [18] [18] HWANG J M, SCHRODER D K. Recombination properties of oxygen-precipitated silicon[J]. Journal of Applied Physics, 1986, 59(7): 2476-2487.

    [19] [19] LI J Y, LIU Y J, TAN Y. Characterisation of single crystalline silicon grown by Czochralski method[J]. Materials Research Innovations, 2012, 16(6): 425-428.

    [20] [20] NIEWELT T, SCHN J, WARTA W, et al. Degradation of crystalline silicon due to boron-oxygen defects[J]. IEEE Journal of Photovoltaics, 2017, 7(1): 383-398.

    [21] [21] CHEN L, YU X G, CHEN P, et al. Effect of oxygen precipitation on the performance of Czochralski silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2011, 95(11): 3148-3151.

    [22] [22] LIN A M R, DUTTON R W, ANTONIADIS D A, et al. The growth of oxidation stacking faults and the point defect generation at Si-SiO interface during thermal oxidation of silicon[J]. Journal of the Electrochemical Society, 1981, 128(5): 1121-1130.

    [23] [23] SADAMITSU S, OKUI M, KOJISUEOKA, et al. A model for the formation of oxidation-induced stacking faults in Czochralski silicon[J]. Japanese Journal of Applied Physics, 1995, 34: L597-L599.

    [24] [24] SINNO T, BROWN R A, VON AMMON W, et al. Point defect dynamics and the oxidation-induced stacking-fault ring in Czochralski-grown silicon crystals[J]. Journal of the Electrochemical Society, 1998, 145(1): 302-318.

    [25] [25] KAISER W, FRISCH H L, REISS H. Mechanism of the formation of donor states in heat-treated silicon[J]. Physical Review, 1958, 112(5): 1546-1554.

    [26] [26] CORBETT J W, FRISCH H L, SNYDER L C. On the thermal donors in silicon[J]. Materials Letters, 1984, 2(3): 209-210.

    [27] [27] WAGNER P, HAGE J. Thermal double donors in silicon[J]. Applied Physics A, 1989, 49(2): 123-138.

    [28] [28] MIYAMURA Y, HARADA H, NAKANO S, et al. Do thermal donors reduce the lifetimes of Czochralski-grown silicon crystals?[J]. Journal of Crystal Growth, 2018, 489: 1-4.

    [29] [29] OLSEN E, HELANDER M I, MEHL T, et al. Spectral characteristics and spatial distribution of thermal donors in N-type Czochralski-silicon wafers[J]. Physica Status Solidi, 2020, 217(6): 1900884.

    [31] [31] HANSEN R L, DRAFALL L E, MCCUTCHAN R M, et al. Surface-treated crucibles for improved zero dislocation performance: US5976247[P]. 1999-11-02.

    [32] [32] HANSEN R L, DRAFALL L E, MCCUTCHAN R M, et al. Methods for improving zero dislocation yield of single crystals: US5980629[P]. 1999-11-09.

    [34] [34] STURM F, TREMPA M, SCHUSTER G, et al. Material evaluation for engineering a novel crucible setup for the growth of oxygen free Czochralski silicon crystals[J]. Journal of Crystal Growth, 2022, 584: 126582.

    [36] [36] ZHOU B, CHEN W L, LI Z H, et al. Reduction of oxygen concentration by heater design during Czochralski Si growth[J]. Journal of Crystal Growth, 2018, 483: 164-168.

    [40] [40] ZULEHNER W. Czochralski growth of silicon[J]. Journal of Crystal Growth, 1983, 65(1/2/3): 189-213.

    [41] [41] CHEN J C, TENG Y Y, WUN W T, et al. Numerical simulation of oxygen transport during the CZ silicon crystal growth process[J]. Journal of Crystal Growth, 2011, 318(1): 318-323.

    [42] [42] POPESCU A, BELLMANN M P, VIZMAN D. Effect of crucible rotation on the temperature and oxygen distributions in Czochralski grown silicon for photovoltaic applications[J]. CrystEngComm, 2021, 23(2): 308-316.

    [45] [45] BORGHESI A, PIVAC B, SASSELLA A, et al. Oxygen precipitation in silicon[J]. Journal of Applied Physics, 1995, 77(9): 4169-4244.

    [46] [46] MACHIDA N, SUZUKI Y, ABE K, et al. The effects of argon gas flow rate and furnace pressure on oxygen concentration in Czochralski-grown silicon crystals[J]. Journal of Crystal Growth, 1998, 186(3): 362-368.

    [47] [47] KALAEV V V, EVSTRATOV I Y, MAKAROV Y N. Gas flow effect on global heat transport and melt convection in Czochralski silicon growth[J]. Journal of Crystal Growth, 2003, 249(1/2): 87-99.

    [48] [48] TENG Y Y, CHEN J C, HUANG C C, et al. Numerical investigation of the effect of heat shield shape on the oxygen impurity distribution at the crystal-melt interface during the process of Czochralski silicon crystal growth[J]. Journal of Crystal Growth, 2012, 352(1): 167-172.

    [49] [49] PEARCE C W, JACCODINE R J, FILO A J, et al. Oxygen content of heavily doped silicon[J]. Applied Physics Letters, 1985, 46(9): 887-889.

    [50] [50] BORGHESI A, GEDDO M, GUIZZETTI G, et al. Interstitial oxygen determination in heavily doped silicon[J]. Journal of Applied Physics, 1990, 68(4): 1655-1660.

    [51] [51] WIJARANAKULA W. Oxygen diffusion in carbon-doped silicon[J]. Journal of Applied Physics, 1990, 68(12): 6538-6540.

    [52] [52] WIJARANAKULA W. Oxygen precipitation and defects in heavily doped Czochralski silicon[J]. Journal of Applied Physics, 1992, 72(7): 2713-2723.

    [53] [53] NOZAKI T, ITOH Y, MASUI T, et al. Behavior of oxygen in the crystal formation and heat treatment of silicon heavily doped with antimony[J]. Journal of Applied Physics, 1986, 59(7): 2562-2565.

    [54] [54] HUANG X M, TERASHIMA K, IZUNOME K, et al. Effect of antimony-doping on the oxygen segregation coefficient in silicon crystal growth[J]. Journal of Crystal Growth, 1995, 149(1/2): 59-63.

    [55] [55] GUPTA S, MESSOLORAS S, SCHNEIDER J R, et al. Oxygen precipitation in carbon-doped silicon[J]. Semiconductor Science and Technology, 1992, 7(1): 6-11.

    [56] [56] SCALA R, PORRINI M, VORONKOV V. Impact of arsenic and phosphorus concentration on oxygen content in heavily doped silicon single crystal[J]. Journal of Crystal Growth, 2020, 548: 125820.

    [57] [57] WANG C, ZHANG H, WANG T H, et al. A continuous Czochralski silicon crystal growth system[J]. Journal of Crystal Growth, 2003, 250(1/2): 209-214.

    [58] [58] XU H, TIAN X R. Minority carrier lifetime of N-type mono-crystalline silicon produced by continuous Czochralski technology and its effect on hetero-junction solar cells[J]. Energy Procedia, 2016, 92: 708-714.

    [59] [59] JAFRI I H, PRASAD V, ANSELMO A P, et al. Role of crucible partition in improving Czochralski melt conditions[J]. Journal of Crystal Growth, 1995, 154(3/4): 280-292.

    [60] [60] KITASHIMA T, LIU L J, KITAMURA K, et al. Effects of shape of an inner crucible on convection of lithium niobate melt in a double-crucible Czochralski process using the accelerated crucible rotation technique[J]. Journal of Crystal Growth, 2004, 267(3/4): 574-582.

    [61] [61] ZHAO W H, LI J C, LIU L J. Control of oxygen impurities in a continuous-feeding Czochralski-silicon crystal growth by the double-crucible method[J]. Crystals, 2021, 11(3): 264.

    [62] [62] NGUYEN T H T, CHEN J C, LO S C. Effects of different partition depths on heat and oxygen transport during continuous Czochralski (CCz) silicon crystal growth[J]. Journal of Crystal Growth, 2022, 583: 126546.

    [64] [64] HIRATA H, HOSHIKAWA K. Silicon crystal growth in a cusp magnetic field[J]. Journal of Crystal Growth, 1989, 96(4): 747-755.

    [67] [67] CHEN J C, GUO P C, CHANG C H, et al. Numerical simulation of oxygen transport during the Czochralski silicon crystal growth with a cusp magnetic field[J]. Journal of Crystal Growth, 2014, 401: 888-894.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Mengyu, LI Tai, DU Shanlin, HUANG Zhenling, ZHAO Liang, LYU Guoqiang, MA Wenhui. Research Progress on Oxygen Control Technology During Preparation of Czochralski Single-Crystal Silicon[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3259

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 22, 2022

    Accepted: --

    Published Online: Oct. 16, 2022

    The Author Email: Mengyu ZHANG (1401637088@qq.com)

    DOI:

    CSTR:32186.14.

    Topics