Acta Optica Sinica, Volume. 43, Issue 10, 1025002(2023)

Detection Probability Model and Verification of an Improved Single-Photon Avalanche Diode

Zhixiang Cao, Meiling Zeng, Jian Yang, and Xiangliang Jin*
Author Affiliations
  • School of Physics and Electronics, Hunan Normal University, Changsha 410081, Hunan , China
  • show less
    References(26)

    [1] Wan C, Hao H, Zhao Q Y et al. Application of single photon detection in wireless optical communication transceiver technology[J]. Laser&Optoelectronics Progress, 59, 0500001(2022).

    [2] Yin H, Song Y X, Li Y C et al. Free-space optical communication atmospheric turbulence compensation based on multiple input multiple output mode diversity coherent reception[J]. Chinese Journal of Lasers, 49, 2306002(2022).

    [3] Li L, Wang C, Guo J N et al. Dimmable visible light communication scheme based on punctured polar codes[J]. Acta Optica Sinica, 42, 1606007(2022).

    [4] Mu Y, Wang C, Ren J W et al. Evaluation and experimental comparisons of different photodetector receivers for visible light communication systems under typical scenarios[J]. Optical Engineering, 60, 096101(2021).

    [5] Wen G H, Huang J, Zhang L et al. A high-speed and high-sensitivity photon-counting communication system based on multichannel SPAD detection[J]. IEEE Photonics Journal, 13, 7900310(2021).

    [6] Leitner T, Feiningstein A, Turchetta R et al. Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology[J]. IEEE Transactions on Electron Devices, 60, 1982-1988(2013).

    [7] Bérubé B L, Rhéaume V P, Therrien A C et al. Development of a single photon avalanche diode (SPAD) array in high voltage CMOS 0.8 µm dedicated to a 3D integrated circuit (3DIC)[C], 1835-1839(2012).

    [8] Kindt W J, van Zeijl H W. Modelling and fabrication of Geiger mode avalanche photodiodes[J]. IEEE Transactions on Nuclear Science, 45, 715-719(1998).

    [9] Kang Y, Lu H X, Lo Y H et al. Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection[J]. Applied Physics Letters, 83, 2955-2957(2003).

    [10] Mazzillo M, Piazza A, Condorelli G et al. Quantum detection efficiency in Geiger mode avalanche photodiodes[J]. IEEE Transactions on Nuclear Science, 55, 3620-3625(2008).

    [11] Chen C P, Tian M F, Jiang Z Y et al. Improved two-dimensional responsivity physical model of a CMOS UV and blue-extended photodiode[J]. Journal of Semiconductors, 35, 094009(2014).

    [12] Gulinatti A, Rech I, Fumagalli S et al. Modeling photon detection efficiency and temporal response of single photon avalanche diodes[J]. Proceedings of SPIE, 7355, 73550X(2009).

    [13] Pancheri L, Stoppa D, Dalla B G F. Characterization and modeling of breakdown probability in sub-micrometer CMOS SPADs[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 328-335(2014).

    [14] Hsieh C A, Tsai C M, Tsui B Y et al. Photon-detection-probability simulation method for CMOS single-photon avalanche diodes[J]. Sensors, 20, 436(2020).

    [15] Li D N, Xu Y T, Xu L et al. Theoretical simulation analysis the quantum efficiency of In0.53Ga0.47As photodetectors[J]. Acta Optica Sinica, 35, 1204002(2015).

    [16] Xu Y, Xiang P, Xie X P et al. A new modeling and simulation method for important statistical performance prediction of single photon avalanche diode detectors[J]. Semiconductor Science and Technology, 31, 065024(2016).

    [17] Moeini I, Ahmadpour M, Mosavi A et al. Modeling the detection efficiency in photodetectors with temperature-dependent mobility and carrier lifetime[J]. Superlattices and Microstructures, 122, 557-562(2018).

    [18] Wang Y, Jin X L, Cao S G et al. Design and measurement of ring-gate single photon avalanche diode with low dark count rate[J]. IEEE Photonics Journal, 12, 1-11(2020).

    [19] Zeng M L, Wang Y, Jin X L et al. Design, fabrication, and verification of blue-extended single-photon avalanche diode with low dark count rate and high photon detection efficiency[J]. Journal of Nanoelectronics and Optoelectronics, 16, 546-551(2021).

    [20] Liu E K, Zhu B S, Luo J S[M]. Semiconductor physics, 273-305(2008).

    [21] Klaassen D B M. A unified mobility model for device simulation: I. Model equations and concentration dependence[J]. Solid-State Electronics, 35, 953-959(1992).

    [22] Klaassen D B M. A unified mobility model for device simulation: Ⅱ. Temperature dependence of carrier mobility and lifetime[J]. Solid-State Electronics, 35, 961-967(1992).

    [23] van Overstraeten R, de Man H. Measurement of the ionization rates in diffused silicon p-n junctions[J]. Solid-State Electronics, 13, 583-608(1970).

    [24] Grant W N. Electron and hole ionization rates in epitaxial silicon at high electric fields[J]. Solid-State Electronics, 16, 1189-1203(1973).

    [25] Okuto Y, Crowell C R. Threshold energy effect on avalanche breakdown voltage in semiconductor junctions[J]. Solid-State Electronics, 18, 161-168(1975).

    [26] Wang K, Jia H Z, Xia G Z. Determination of optical parameters in thin films by transmittance spectra[J]. Spectroscopy and Spectral Analysis, 28, 2713-2716(2008).

    Tools

    Get Citation

    Copy Citation Text

    Zhixiang Cao, Meiling Zeng, Jian Yang, Xiangliang Jin. Detection Probability Model and Verification of an Improved Single-Photon Avalanche Diode[J]. Acta Optica Sinica, 2023, 43(10): 1025002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: OPTOELECTRONICS

    Received: Dec. 7, 2022

    Accepted: Dec. 27, 2022

    Published Online: May. 10, 2023

    The Author Email: Jin Xiangliang (jinxl@hunnu.edu.cn)

    DOI:10.3788/AOS222111

    Topics