Acta Photonica Sinica, Volume. 51, Issue 10, 1026001(2022)
Recent Progress on the Interaction between Vector Beams and Alkali Metal Atomic Medium(Invited)
[1] R J WEISS. A brief history of light and those that lit the way. World Scientific(1996).
[2] M S ZUBAIRY. A very brief history of light, 3-24(2016).
[3] M PLANCK. Entropie und temperatur strahlender wärme. Annalen der Physik, 306, 719-737(1900).
[4] A EINSTEIN. On a heuristic point of view concerning the production and transformation of light. Annalen der Physik, 17, 1-18(1905).
[5] D SUTER. The physics of laser-atom interactions(1997).
[6] M BORN, E WOLF. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light(2013).
[7] M O SCULLY, M S ZUBAIRY. Quantum optics. American Association of Physics Teachers(1999).
[8] R W BOYD. Nonlinear optics(2020).
[9] J HECHT. A short history of laser development. Applied Optics, 49, F99-F122(2010).
[10] M SCHIRBER. Nobel Prize-lasers as tools. Physics, 11, 100(2018).
[11] J M DUDLEY. Light, lasers, and the Nobel Prize. Advanced Photonics, 2, 050501(2020).
[12] A E SIEGMAN. Lasers(1986).
[13] L ALLEN, M W BEIJERSBERGEN, R J C SPREEUW et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 45, 8185(1992).
[14] M A BANDRES, J C GUTIÉRREZ-VEGA. Ince-gaussian beams. Optics Letters, 29, 144-146(2004).
[15] E SNITZER. Cylindrical dielectric waveguide modes. Journal of the Optical Society of America, 51, 491-498(1961).
[16] D G HALL. Vector-beam solutions of Maxwell's wave equation. Optics Letters, 21, 9-11(1996).
[17] Y MUSHIAKE, K MATSUMURA, N NAKAJIMA. Generation of radially polarized optical beam mode by laser oscillation. Proceedings of the IEEE, 60, 1107-1109(1972).
[18] D POHL. Operation of a ruby laser in the purely transverse electric mode TE01. Applied Physics Letters, 20, 266-267(1972).
[19] M E MARHIC, E GARMIRE. Low‐order TE0 q operation of a CO2 laser for transmission through circular metallic waveguides. Applied Physics Letters, 38, 743-745(1981).
[20] S C TIDWELL, D H FORD, W D KIMURA. Generating radially polarized beams interferometrically. Applied Optics, 29, 2234-2239(1990).
[21] S C TIDWELL, G H KIM, W D KIMURA. Efficient radially polarized laser beam generation with a double interferometer. Applied Optics, 32, 5222-5229(1993).
[22] E G CHURIN, J HOΒFELD, T TSCHUDI. Polarization configurations with singular point formed by computer generated holograms. Optics Communications, 99, 13-17(1993).
[23] R H JORDAN, D G HALL. Free-space azimuthal paraxial wave equation: the azimuthal Bessel–Gauss beam solution. Optics Letters, 19, 427-429(1994).
[24] M STALDER, M SCHADT. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Optics Letters, 21, 1948-1950(1996).
[25] K S YOUNGWORTH, T G BROWN. Focusing of high numerical aperture cylindrical-vector beams. Optics Express, 7, 77-87(2000).
[26] D P BISS, T G BROWN. Cylindrical vector beam focusing through a dielectric interface. Optics Express, 9, 490-497(2001).
[27] Qiwen ZHAN, J R LEGER. Focus shaping using cylindrical vector beams. Optics Express, 10, 324-331(2002).
[28] Haifeng WANG, Luping SHI, B LUKYANCHUK et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nature Photonics, 2, 501-505(2008).
[29] Lei HAN, Shuxia QI, Sheng LIU et al. Tightly focused light field with controllable pure transverse polarization state at the focus. Optics Letters, 45, 6034-6037(2020).
[30] E OTTE, K TEKCE, C DENZ. Tailored intensity landscapes by tight focusing of singular vector beams. Optics Express, 25, 20194-20201(2017).
[31] Yun CHEN, Jinwen WANG, Zhou PENG et al. Tailoring multi-singularity structure induced by a focused radially polarized beam. Journal of the Optical Society of America A, 38, 419-425(2021).
[32] R DORN, S QUABIS, G LEUCHS. Sharper focus for a radially polarized light beam. Physical Review Letters, 91, 233901(2003).
[33] M MClAREN, T KONRAD, A FORBES. Measuring the nonseparability of vector vortex beams. Physical Review A, 92, 023833(2015).
[34] Yijie SHEN, C ROSALES‐GUZMÁN. Nonseparable states of light: from quantum to classical. Laser & Photonics Reviews, 16, 2100533(2022).
[35] B NDAGANO, B PEREZ-GARCIA, F S ROUX et al. Characterizing quantum channels with non-separable states of classical light. Nature Physics, 13, 397-402(2017).
[36] M ERHARD, M KRENN, A ZEILINGER. Advances in high-dimensional quantum entanglement. Nature Reviews Physics, 2, 365-381(2020).
[37] M ERHARD, R FICKLER, M KRENN et al. Twisted photons: new quantum perspectives in high dimensions. Light: Science & Applications, 7, 17146-17146(2018).
[38] B NDAGANO, I NAPE, M A COX et al. Creation and detection of vector vortex modes for classical and quantum communication. Journal of Lightwave Technology, 36, 292-301(2018).
[39] Dong MAO, Yang ZHENG, Chao ZENG et al. Generation of polarization and phase singular beams in fibers and fiber lasers. Advanced Photonics, 3, 014002(2021).
[40] E OTTE, C DENZ. Optical trapping gets structure: structured light for advanced optical manipulation. Applied Physics Reviews, 7, 041308(2020).
[41] Yuanjie YANG, Yuxuan REN, Mingzhou CHEN et al. Optical trapping with structured light: a review. Advanced Photonics, 3, 034001(2021).
[42] G BAUTISTA, M KAURANEN. Vector-field nonlinear microscopy of nanostructures. ACS Photonics, 3, 1351-1370(2016).
[43] Y KOZAWA, S SATO. Small focal spot formation by vector beams. Progress in Optics, 66, 35-90(2021).
[44] Bing GU, Xi CAO, Guanghao RUI et al. Vector beams excited nonlinear optical effects. Journal of Nonlinear Optical Physics & Materials, 27, 1850045(2018).
[45] Jinwen WANG, F CASTELLUCCI, S FRANKE-ARNOLD. Vectorial light-matter interaction: exploring spatially structured complex light fields. AVS Quantum Science, 2, 031702(2020).
[46] S SLUSSARENKO, G J PRYDE. Photonic quantum information processing: a concise review. Applied Physics Reviews, 6, 041303(2019).
[47] A FORBES, I NAPE. Quantum mechanics with patterns of light: progress in high dimensional and multidimensional entanglement with structured light. AVS Quantum Science, 1, 011701(2019).
[48] D COZZOLINO, LIO B DA, D BACCO et al. High‐dimensional quantum communication: benefits, progress, and future challenges. Advanced Quantum Technologies, 2, 1900038(2019).
[49] C L DEGEN, F REINHARD, P CAPPELLARO. Quantum sensing. Reviews of Modern Physics, 89, 035002(2017).
[50] E POLINO, M VALERI, N SPAGNOLO et al. Photonic quantum metrology. AVS Quantum Science, 2, 024703(2020).
[51] M KUTAS, B E HAASE, F RIEXINGER et al. Quantum sensing with extreme light. Advanced Quantum Technologies, 5, 2100164(2022).
[52] G FITZGERALD. M. Poincaré and Maxwell. Nature, 45, 532-533(1892).
[53] C ROSALES-GUZMÁN, B NDAGANO, A FORBES. A review of complex vector light fields and their applications. Journal of Optics, 20, 123001(2018).
[54] G MILIONE, H I SZTUL, D A NOLAN et al. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Physical Review Letters, 107, 053601(2011).
[55] Y KOZAWA, S SATO. Generation of a radially polarized laser beam by use of a conical Brewster prism. Optics Letters, 30, 3063-3065(2005).
[56] M A AHMED, A VOSS, M M VOGEL et al. Multilayer polarizing grating mirror used for the generation of radial polarization in Yb: YAG thin-disk lasers. Optics Letters, 32, 3272-3274(2007).
[57] D NAIDOO, F S ROUX, A DUDLEY et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nature Photonics, 10, 327-332(2016).
[58] V G NIZIEV, R S CHANG, A V NESTEROV. Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer. Applied Optics, 45, 8393-8399(2006).
[59] L MARRUCCI, C MANZO, D PAPARO. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 96, 163905(2006).
[60] Hao CHEN, Jingjing HAO, Baifu ZHANG et al. Generation of vector beam with space-variant distribution of both polarization and phase. Optics Letters, 36, 3179-3181(2011).
[61] I MORENO, J A DAVIS, T M HERNANDEZ et al. Complete polarization control of light from a liquid crystal spatial light modulator. Optics Express, 20, 364-376(2012).
[62] D MALUENDA, I JUVELLS, R MARTÍNEZ-HERRERO et al. Reconfigurable beams with arbitrary polarization and shape distributions at a given plane. Optics Express, 21, 5432-5439(2013).
[63] Wei HAN, Yanfang YANG, Wen CHENG et al. Vectorial optical field generator for the creation of arbitrarily complex fields. Optics Express, 21, 20692-20706(2013).
[64] SHENG LIU, SHUXIA QI, YI ZHANG et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude. Photonics Research, 6, 228-233(2018).
[65] Yuan GAO, Zhaozhong CHEN, Jianping DING et al. Single ultra-high-definition spatial light modulator enabling highly efficient generation of fully structured vector beams. Applied Optics, 58, 6591-6596(2019).
[66] Danhua LIU, Changda ZHOU, Peiyao LU et al. Generation of vector beams with different polarization singularities based on metasurfaces. New Journal of Physics, 24, 043022(2022).
[67] Shuxia QI, Sheng LIU, Peng LI et al. A method for fast and robustly measuring the state of polarization of arbitrary light beams based on Pancharatnam-Berry phase. Journal of Applied Physics, 126, 133105(2019).
[68] Shuxia QI, Sheng LIU, Lei HAN et al. Dynamically measuring the holo-information of light fields in three-dimensional space using a periodic polarization-structured light. Science China Physics, Mechanics & Astronomy, 64, 1-8(2021).
[69] AL KHAFAJI M A, C M CISOWSKI, H JIMBROWN et al. Single-shot characterization of vector beams by generalized measurements. Optics Express, 30, 22396-22409(2022).
[70] Ruishan CHEN, Jinghao WANG, Xiaoqiang ZHANG et al. High efficiency all-fiber cylindrical vector beam laser using a long-period fiber grating. Optics Letters, 43, 755-758(2018).
[71] Danhua LIU, Changda ZHOU, Peiyao LU et al. Generation of vector beams with different polarization singularities based on metasurfaces. New Journal of Physics, 24, 043022(2022).
[72] P WRÓBEL, J PNIEWSKI, T J ANTOSIEWICZ et al. Focusing radially polarized light by a concentrically corrugated silver film without a hole. Physical Review Letters, 102, 183902(2009).
[73] Xilin WANG, Jing CHEN, Yongnan LI et al. Optical orbital angular momentum from the curl of polarization. Physical Review Letters, 105, 253602(2010).
[74] C HNATOVSKY, V SHVEDOV, W KROLIKOWSKI et al. Revealing local field structure of focused ultrashort pulses. Physical Review Letters, 106, 123901(2011).
[75] J T BARREIRO, T C WEI, P G KWIAT. Remote preparation of single-photon “hybrid” entangled and vector-polarization states. Physical Review Letters, 105, 030407(2010).
[76] A FORBES, M DE OLIVEIRA, M R DENNIS. Structured light. Nature Photonics, 15, 253-262(2021).
[77] Qiwen ZHAN. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics, 1, 1-57(2009).
[78] L MARRUCCI, E KARIMI, S SLUSSARENKO et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. Journal of Optics, 13, 064001(2011).
[79] H RUBINSZTEIN-DUNLOP, A FORBES, M V BERRY et al. Roadmap on structured light. Journal of Optics, 19, 013001(2016).
[80] Jian CHEN, Chenhao WAN, Qiwen ZHAN. Vectorial optical fields: recent advances and future prospects. Science Bulletin, 63, 54-74(2018).
[81] Yijie SHEN, Xuejiao WANG, Zhenwei XIE et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light: Science & Applications, 8, 1-29(2019).
[82] RUCHI , P SENTHILKUMARAN, S K PAL. Phase singularities to polarization singularities. International Journal of Optics, 2020, 2812803(2020).
[83] Qiang WANG, Chenghou TU, Yongnan LI et al. Polarization singularities: progress, fundamental physics, and prospects. APL Photonics, 6, 040901(2021).
[84] Jian WANG, Yize LIANG. Generation and detection of structured light: a review. Frontiers in Physics, 9, 688284(2021).
[85] Yue PAN, Jianping DING, Huitian WANG. Manipulation on novel vector optical fields:introduction,advances and applications. Acta Optica Sinica, 39, 0126001(2019).
[86] Jian CHEN, Qiwen ZHAN. Tailoring laser focal fields with vectorial optical fields. Acta Optics Sinica, 39, 0126002(2019).
[87] Yuan ZHOU, Runze LI, Xianghua YU et al. Progress in study and application of optical field modulation technology based on liquid crystal spatial light modulators (invited). Acta Photonica Sinica, 50, 1123001(2021).
[88] Li ZHANG, Xinzhou LIANG, Qian LIN et al. Research progress of hybrid vector beams (Invited). Infrared and Laser Engineering, 50, 20210447(2021).
[89] Yuan GAO, Jianping DING, Huitian WANG. Manipulation of multimodal vector optical fields in three-dimensional space (invited). Acta Photonica Sinica, 51, 0151101(2022).
[90] I K KOMINIS, T W KORNACK, J C ALLRED et al. A subfemtotesla multichannel atomic magnetometer. Nature, 422, 596-599(2003).
[91] D BUDKER, M ROMALIS. Optical magnetometry. Nature Physics, 3, 227-234(2007).
[92] T M TIERNEY, N HOLMES, S MELLOR et al. Optically pumped magnetometers: from quantum origins to multi-channel magnetoencephalography. NeuroImage, 199, 598-608(2019).
[93] C WIEMAN, T W HÄNSCH. Doppler-free laser polarization spectroscopy. Physical Review Letters, 36, 1170(1976).
[94] D ORON, N DUDOVICH, Y SILBERBERG. Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy. Physical Review Letters, 90, 213902(2003).
[95] M L HARRIS, C S ADAMS, S L CORNISH et al. Polarization spectroscopy in rubidium and cesium. Physical Review A, 73, 062509(2006).
[96] G KHITROVA, P R BERMAN, M SARGENT. Theory of pump-probe spectroscopy. Journal of the Optical Society of America B, 5, 160-170(1988).
[97] Yingcheng CHEN, Yunwen CHEN, Jungjung SU et al. Pump-probe spectroscopy of cold 87Rb atoms in various polarization configurations. Physical Review A, 63, 043808(2001).
[98] M C FISCHER, J W WILSON, F E ROBLES et al. Invited review article: pump-probe microscopy. Review of Scientific Instruments, 87, 031101(2016).
[99] G GALBÁCS. A review of applications and experimental improvements related to diode laser atomic spectroscopy. Applied Spectroscopy Reviews, 41, 259-303(2006).
[100] H NASIM, Y JAMIL. Recent advancements in spectroscopy using tunable diode lasers. Laser Physics Letters, 10, 043001(2013).
[101] H C BEICA, S WINTER, C MOK et al. Laboratory courses on laser spectroscopy and atom trapping. Atoms, 8, 25(2020).
[102] Y Y JAU, T WALKER, W HAPPER. Optically pumped atoms(2010).
[103] M AUZINSH, D BUDKER, S ROCHESTER. Optically polarized atoms: understanding light-atom interactions(2010).
[104] F K FATEMI. Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems. Optics Express, 19, 25143-25150(2011).
[105] S NAKAYAMA. Optical pumping effects in high resolution laser spectroscopy. Physica Scripta, 1997, 64(1997).
[106] Xin YANG, Aiping FANG, Jinwen WANG et al. Manipulating the transmission of vector beam with spatially polarized atomic ensemble. Optics Express, 27, 3900-3908(2019).
[107] Yunke LI, Jinwen WANG, Xin YANG et al. Controllable transmission of vector beams in dichroic medium. Chinese Physics B, 28, 014205(2019).
[108] Jinwen WANG, Yun CHEN, Xin YANG et al. Optically polarized selection in atomic vapor and its application in mapping the polarization distribution. Journal of Physics Communications, 4, 015019(2020).
[109] Jinwen WANG, Xin YANG, Zhenghui DOU et al. Directly extracting the authentic basis of cylindrical vector beams by a pump-probe technique in an atomic vapor. Applied Physics Letters, 115, 221101(2019).
[110] Jinwen WANG, Xin YANG, Yunke LI et al. Optically spatial information selection with hybridly polarized beam in atomic vapor. Photonics Research, 6, 451-456(2018).
[111] D BUDKER, W GAWLIK, D F KIMBALL et al. Resonant nonlinear magneto-optical effects in atoms. Reviews of Modern Physics, 74, 1153(2002).
[112] Shuai SHI, Dongsheng DING, Zhiyuan ZHOU et al. Magnetic-field-induced rotation of light with orbital angular momentum. Applied Physics Letters, 106, 261110(2015).
[113] L STERN, A SZAPIRO, E TALKER et al. Controlling the interactions of space-variant polarization beams with rubidium vapor using external magnetic fields. Optics Express, 24, 4834-4841(2016).
[114] Liyun ZHANG, Yang YANG, Xin YANG et al. Modulate the vector beams with magneto optic effect in atomic ensembles. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 155404(2020).
[115] A M ALHASAN, J FIUTAK. Interference effects in the two-colour excitation of the sodium atom. Radiation Physics & Chemistry, 68, 73-77(2003).
[116] S PRADHAN, B N JAGATAP. Magnetoassisted pump-probe spectroscopy of cesium atoms. Journal of the Optical Society of America B, 28, 398-405(2011).
[117] S GOZZINI, A FIORETTI, A LUCCHESINI et al. Tunable and polarization-controlled high-contrast bright and dark coherent resonances in potassium. Optics Letters, 42, 2930-2933(2017).
[118] M GHADERI GORAN ABAD, M MAHMOUDI. Laguerre-Gaussian modes generated vector beam via nonlinear magneto-optical rotation. Scientific Reports, 11, 1-12(2021).
[119] N DALOI, T N DEY. Vector beam polarization rotation control using resonant magneto optics. Optics Express, 30, 21894-21905(2022).
[120] K J BOLLER, A IMAMOĞLU, S E HARRIS. Observation of electromagnetically induced transparency. Physical Review Letters, 66, 2593(1991).
[121] K BERGMANN, H THEUER, B W SHORE. Coherent population transfer among quantum states of atoms and molecules. Reviews of Modern Physics, 70, 1003(1998).
[122] G ALZETTA, S CARTALEVA, Y DANCHEVA et al. Coherent effects on the Zeeman sublevels of hyperfine states at the D1 and D2 lines of Rb. Journal of Optics B: Quantum and Semiclassical Optics, 3, 181(2001).
[123] N RADWELL, T W CLARK, B PICCIRILLO et al. Spatially dependent electromagnetically induced transparency. Physical Review Letters, 114, 123603(2015).
[124] C LIU, Z DUTTON, C H BEHROOZI et al. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature, 409, 490-493(2001).
[125] Chao SUN, Changshui CHEN, Junxiong WEI et al. Efficient three-process frequency conversion based on straddling stimulated Raman adiabatic passage. IEEE Photonics Journal, 6, 1-10(2014).
[126] F CASTELLUCCI, T W CLARK, A SELYEM et al. Atomic compass: detecting 3d magnetic field alignment with vector vortex light. Physical Review Letters, 127, 233202(2021).
[127] L KARPA, M WEITZ. A Stern–Gerlach experiment for slow light. Nature Physics, 2, 332-335(2006).
[128] Yanhong XIAO, M KLEIN, M HOHENSEE et al. Slow light beam splitter. Physical Review Letters, 101, 043601(2008).
[129] Peng PENG, Wanxia CAO, Ce SHEN et al. Anti-parity-time symmetry with flying atoms. Nature Physics, 12, 1139-1145(2016).
[130] V PARIGI, V D’AMBROSIO, C ARNOLD et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nature Communications, 6, 1-7(2015).
[131] Yinghao YE, Mingxin DONG, Yichen YU et al. Experimental realization of optical storage of vector beams of light in warm atomic vapor. Optics Letters, 44, 1528-1531(2019).
[132] Xin YANG, Yun CHEN, Jinwen WANG et al. Observing quantum coherence induced transparency of hybrid vector beams in atomic vapor. Optics Letters, 44, 2911-2914(2019).
[133] S BARREIRO, J W R TABOSA, H FAILACHE et al. Spectroscopic observation of the rotational Doppler effect. Physical Review Letters, 97, 113601(2006).
[134] Shuwei QIU, Jinwen WANG, F CASTELLUCCI et al. Visualization of magnetic fields with cylindrical vector beams in a warm atomic vapor. Photonics Research, 9, 2325-2331(2021).
[135] Chen YANG, Zhiyuan ZHOU, Yan LI et al. Nonlinear frequency conversion and manipulation of vector beams in a Sagnac loop. Optics Letters, 44, 219-222(2019).
[136] Haigang LIU, Hui LI, Yuanlin ZHENG et al. Nonlinear frequency conversion and manipulation of vector beams. Optics Letters, 43, 5981-5984(2018).
[137] Hui LI, Haigang LIU, Xianfeng CHEN. Nonlinear frequency conversion of vectorial optical fields with a Mach-Zehnder interferometer. Applied Physics Letters, 114, 241901(2019).
[138] Hui LI, Haigang LIU, Xianfeng CHEN. Dual waveband generator of perfect vector beams. Photonics Research, 7, 1340-1344(2019).
[139] Li ZHANG, Xiaodong QIU, Fangshu LI et al. Second harmonic generation with full Poincaré beams. Optics Express, 26, 11678-11684(2018).
[140] Li ZHANG, Fei LIN, Xiaodong QIU et al. Full vectorial feature of second-harmonic generation with full Poincaré beams. Chinese Optics Letters, 17, 091901(2019).
[141] Haijin WU, Haoran YANG, C ROSALES-GUZMÁN et al. Vectorial nonlinear optics: type-Ⅱ second-harmonic generation driven by spin-orbit-coupled fields. Physical Review A, 100, 053840(2019).
[142] Haijin WU, Bo ZHAO, C ROSALES-GUZMÁN et al. Spatial-polarization-independent parametric up-conversion of vectorially structured light. Physical Review Applied, 13, 064041(2020).
[143] Ruyue ZHONG, Zhihan ZHU, Haijun WU et al. Gouy-phase-mediated propagation variations and revivals of transverse structure in vectorially structured light. Physical Review A, 103, 053520(2021).
[144] A Z KHOURY, P H S RIBEIRO, K DECHOUM. Transfer of angular spectrum in parametric down-conversion with structured light. Physical Review A, 102, 033708(2020).
[145] DA SILVA B P, W T BUONO, L J PEREIRA et al. Spin to orbital angular momentum transfer in frequency up-conversion. Nanophotonics, 11, 771-778(2022).
[146] Yanchao LOU, Zimo CHENG, Zhihong LIU et al. Third-harmonic generation of spatially structured light in a quasi-periodically poled crystal. Optica, 9, 183-186(2022).
[147] Haijin WU, Bingshi YU, Zhihan ZHU et al. Conformal frequency conversion for arbitrary vectorial structured light. Optica, 9, 187-196(2022).
[148] G WALKER, A S ARNOLD, S FRANKE-ARNOLD. Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor. Physical Review Letters, 108, 243601(2012).
[149] Churong PAN, Chengdong YANG, Huajie HU et al. Trans-spectral vector beam nonlinear conversion via parametric four-wave mixing in alkali vapor. Optics Letters, 46, 5579-5582(2021).
[150] K Y BLIOKH, F J RODRÍGUEZ-FORTUÑO, F Nori et al. Spin-orbit interactions of light. Nature Photonics, 9, 796-808(2015).
[151] F CARDANO, L MARRUCCI. Spin–orbit photonics. Nature Photonics, 9, 776-778(2015).
[152] Bingshi YU, Haijun WU, Haoran YANG et al. Full characterization of spin-orbit coupled photons via spatial-Stokes measurement. arXiv preprint arXiv(2019).
[153] Huajie HU, Dajin LUO, Haixia CHEN. Nonlinear frequency conversion of vector beams with four wave mixing in atomic vapor. Applied Physics Letters, 115, 211101(2019).
[154] Tengfei JIAO, Xuemei CHENG, Qian ZHANG et al. Multi-wave mixing using a single vector optical field. Applied Physics Letters, 115, 201104(2019).
[155] Jiaqi YUAN, Xuemei CHENG, Xing WANG et al. Single-scan polarization-resolved degenerate four-wave mixing spectroscopy using a vector optical field. Photonics Research, 10, 230-236(2022).
[156] R Y CHIAO, E GARMIRE, C H TOWNES. Self-trapping of optical beams. Physical Review Letters, 13, 479(1964).
[157] A W SNYDER, D J MITCHELL. Accessible solitons. Science, 276, 1538-1541(1997).
[158] G PATWARDHAN, X GAO, A SAGIV et al. Loss of polarization of elliptically polarized collapsing beams. Physical Review A, 99, 033824(2019).
[159] Simin LI, Yongnan LI, Xilin WANG et al. Taming the collapse of optical fields. Scientific Reports, 2, 1-5(2012).
[160] F BOUCHARD, H LAROCQUE, A M YAO et al. Polarization shaping for control of nonlinear propagation. Physical Review Letters, 117, 233903(2016).
[161] C J GIBSON, P BEVINGTON, G L OPPO et al. Control of polarization rotation in nonlinear propagation of fully structured light. Physical Review A, 97, 033832(2018).
[162] A M YAO, C J GIBSON, G L OPPO. Control of spatially rotating structures in diffractive Kerr cavities. Optics Express, 27, 31273-31289(2019).
[163] Dajin LUO, Huajie HU, Churong PAN et al. Nonlinear control of polarization rotation of hybrid-order vector vortex beams. Journal of Optics, 22, 115612(2020).
[164] Huajie HU, Dajin LUO, Churong PAN et al. Collapse of hybrid vector beam in Rb atomic vapor. Optics Letters, 46, 2614-2617(2021).
[165] A N BLACK, S CHOUDHARY, E S ARROYO-RIVERA et al. Suppression of nonlinear optical rogue wave formation using polarization-structured beams. Physical Review Letter, 129, 133902(2022).
[166] Jian CHEN, Chenhao WAN, Andy CHONG et al. Experimental demonstration of cylindrical vector spatiotemporal optical vortex. Nanophotonics, 10, 4489-4495(2021).
[167] C ROSALES-GUZMÁN, N BHEBHE, A FORBES. Simultaneous generation of multiple vector beams on a single SLM. Optics Express, 25, 25697-25706(2017).
[168] Li YAO, Xiaobo HU, B PEREZ-GARCIA et al. Classically entangled Ince-Gaussian modes. Applied Physics Letters, 116, 221105(2020).
[169] Jinwen WANG, Yun CHEN, M AAL KHAFAJI et al. Exploring the ellipticity dependency on vector helical Ince-Gaussian beams and their focusing properties. Optics Express, 30, 24497-24506(2022).
[170] M SAFFMAN, T G WALKER, K MØLMER. Quantum information with Rydberg atoms. Reviews of Modern Physics, 82, 2313(2010).
[171] C S ADAMS, J D PRITCHARD, J P SHAFFER. Rydberg atom quantum technologies. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 012002(2019).
[172] L MADEIRA, A CIDRIM, M HEMMERLING et al. Quantum turbulence in Bose-Einstein condensates: present status and new challenges ahead. AVS Quantum Science, 2, 035901(2020).
[173] L A DOWNES, A R MACkELLAR, D J WHITING et al. Full-field terahertz imaging at kilohertz frame rates using atomic vapor. Physical Review X, 10, 011027(2020).
[174] Shuying CHEN, D J REED, A R MACKELLAR et al. Terahertz electrometry via infrared spectroscopy of atomic vapor. Optica, 9, 485-491(2022).
Get Citation
Copy Citation Text
Xin YANG, Churong PAN, Yun CHEN, Jinwen WANG, Dong WEI, Hong GAO. Recent Progress on the Interaction between Vector Beams and Alkali Metal Atomic Medium(Invited)[J]. Acta Photonica Sinica, 2022, 51(10): 1026001
Category:
Received: Jun. 30, 2022
Accepted: Sep. 16, 2022
Published Online: Nov. 30, 2022
The Author Email: WEI Dong (weidong@xjtu.edu.cn), GAO Hong (honggao@xjtu.edu.cn)