Acta Optica Sinica, Volume. 42, Issue 17, 1713001(2022)

High-Performance Passive Silicon Photonic Waveguide Devices: Progress and Challenges

Dajian Liu, Weike Zhao, Long Zhang, Lijia Song, Jingshu Guo, Yiwei Xie, Huan Li, Zejie Yu, Liu Liu, Yaocheng Shi, and Daoxin Dai*
Author Affiliations
  • College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • show less
    References(154)

    [1] Dong P, Chen Y K, Duan G H et al. Silicon photonic devices and integrated circuits[J]. Nanophotonics, 3, 215-228(2014).

    [2] Xiang Y L, Cao H Z, Liu C Y et al. High-speed waveguide Ge/Si avalanche photodiode with a gain-bandwidth product of 615 GHz[J]. Optica, 9, 762-769(2022).

    [3] Doylend J K, Knights A P. The evolution of silicon photonics as an enabling technology for optical interconnection[J]. Laser & Photonics Reviews, 6, 504-525(2012).

    [4] Selvaraja S K, Bogaerts W, Dumon P et al. Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 16, 316-324(2010).

    [5] Dai D, Liu L, Wosinski L et al. Design and fabrication of an ultrasmall overlapped AWG demultiplexers based on α-Si nanowire waveguides[J]. Electronics Letters, 42, 400-402(2006).

    [6] Dai D X, Fu X, Shi Y C et al. Experimental demonstration of an ultracompact Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with photonic crystal reflectors[J]. Optics Letters, 35, 2594-2596(2010).

    [7] Pathak S, van Thourhout D, Bogaerts W. Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications[J]. Optics Letters, 38, 2961-2964(2013).

    [8] Doerr C R, Taunay T F. Silicon photonics core‑, wavelength-, and polarization-diversity receiver[J]. IEEE Photonics Technology Letters, 23, 597-599(2011).

    [9] Randel S, Ryf R, Sierra A et al. 6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization[J]. Optics Express, 19, 16697-16707(2011).

    [10] Dai D X. Silicon mode-(de)multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light[C], ATh3B.3(2012).

    [11] Dai D X, Wang J, Shi Y C. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light[J]. Optics Letters, 38, 1422-1424(2013).

    [12] Wang J, Dai D X. On-chip Si optical interconnect with 8-channel hybrid (de)multiplexer enabling mode- and polarization-division-multiplexing simultaneously[C], AF2A.3(2013).

    [13] Wang J, He S L, Dai D X. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing[J]. Laser & Photonics Reviews, 8, L18-L22(2014).

    [14] Driscoll J B, Grote R R, Souhan B et al. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing[J]. Optics Letters, 38, 1854-1856(2013).

    [15] Luo L W, Ophir N, Chen C P et al. WDM-compatible mode-division multiplexing on a silicon chip[J]. Nature Communications, 5, 3069(2014).

    [16] Qiu H Y, Yu H, Hu T et al. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers[J]. Optics Express, 21, 17904-17911(2013).

    [17] Xing J J, Li Z Y, Xiao X et al. Two-mode multiplexer and demultiplexer based on adiabatic couplers[J]. Optics Letters, 38, 3468-3470(2013).

    [18] Shi W, Tian Y, Gervais A. Scaling capacity of fiber-optic transmission systems via silicon photonics[J]. Nanophotonics, 9, 4629-4663(2020).

    [19] Zhou Z P, Bai B W, Liu L. Silicon on-chip PDM and WDM technologies via plasmonics and subwavelength grating[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 4600413(2019).

    [20] Dai D, Bowers J E. Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects[J]. Nanophotonics, 3, 283-311(2014).

    [21] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 7, 354-362(2013).

    [22] Miller S A, Yu M J, Ji X C et al. Low-loss silicon platform for broadband mid-infrared photonics[J]. Optica, 4, 707-712(2017).

    [23] Doerr C, Chen L. Silicon photonics in optical coherent systems[J]. Proceedings of the IEEE, 106, 2291-2301(2018).

    [24] Saber M G, Vall-Llosera G, Patel D et al. Silicon-based optical links using novel direct detection, coherent detection and dual polarization methods for new generation transport architectures[J]. Optics Communications, 450, 48-60(2019).

    [25] Liu D J, Xu H N, Tan Y et al. Silicon photonic filters[J]. Microwave and Optical Technology Letters, 63, 2252-2268(2021).

    [26] Xu H N, Dai D X, Shi Y C. Low-crosstalk and fabrication-tolerant four-channel CWDM filter based on dispersion-engineered Mach-Zehnder interferometers[J]. Optics Express, 29, 20617-20631(2021).

    [27] Bogaerts W, de Heyn P, van Vaerenbergh T et al. Silicon microring resonators[J]. Laser & Photonics Reviews, 6, 47-73(2012).

    [28] Cheng R, Chrostowski L. Spectral design of silicon integrated Bragg gratings: a tutorial[J]. Journal of Lightwave Technology, 39, 712-729(2021).

    [29] Zou J, Ma X, Xia X et al. High resolution and ultra-compact on-chip spectrometer using bidirectional edge-input arrayed waveguide grating[J]. Journal of Lightwave Technology, 38, 4447-4453(2020).

    [30] Melati D, Verly P G, Delâge A et al. Compact and low crosstalk echelle grating demultiplexer on silicon-on-insulator technology[J]. Electronics, 8, 687(2019).

    [31] Prabhu A M, Tsay A, Han Z et al. Extreme miniaturization of silicon add-drop microring filters for VLSI photonics applications[J]. IEEE Photonics Journal, 2, 436-444(2010).

    [32] Chen P X, Chen S T, Guan X W et al. High-order microring resonators with bent couplers for a box-like filter response[J]. Optics Letters, 39, 6304-6307(2014).

    [33] Liu D J, Zhang C, Liang D et al. Submicron-resonator-based add-drop optical filter with an ultra-large free spectral range[J]. Optics Express, 27, 416-422(2019).

    [34] Xiao S J, Khan M H, Shen H et al. Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm[J]. Journal of Lightwave Technology, 26, 228-236(2008).

    [35] Liu D J, Zhang L, Tan Y et al. High-order adiabatic elliptical-microring filter with an ultra-large free-spectral-range[J]. Journal of Lightwave Technology, 39, 5910-5916(2021).

    [36] Jayatilleka H, Shoman H, Chrostowski L et al. Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits[J]. Optica, 6, 84-91(2019).

    [37] Jeong S H, Shimura D, Simoyama T et al. Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer[J]. Optics Express, 21, 30163-30174(2013).

    [38] Liu D J, He J H, Xiang Y L et al. High-performance silicon photonic filters based on all-passive tenth-order adiabatic elliptical-microrings[J]. APL Photonics, 7, 051303(2022).

    [39] Liu D J, Zhang L, Jiang H X et al. First demonstration of an on-chip quadplexer for passive optical network systems[J]. Photonics Research, 9, 757-763(2021).

    [40] Wang X. Silicon photonic waveguide Bragg gratings[D](2013).

    [41] Xie S J, Zhan J H, Hu Y W et al. Add-drop filter with complex waveguide Bragg grating and multimode interferometer operating on arbitrarily spaced channels[J]. Optics Letters, 43, 6045-6048(2018).

    [42] Charron D, Shi W. O-band add-drop filter in Bragg-grating-assisted Mach-Zehnder interferometers for CWDM[C], JTh2A.44(2019).

    [43] Hammood M, Mistry A, Yun H et al. Four-channel, silicon photonic, wavelength multiplexer-demultiplexer with high channel isolations[C](2020).

    [44] Charron D, St-Yves J, Jafari O et al. Subwavelength-grating contra directional couplers for large stopband filters[J]. Optics Letters, 43, 895-898(2018).

    [45] Yun H, Hammood M, Lin S et al. Broadband flat-top SOI add-drop filters using apodized sub-wavelength grating contra directional couplers[J]. Optics Letters, 44, 4929-4932(2019).

    [46] Hammood M, Mistry A, Yun H et al. Broadband, silicon photonic, optical add-drop filters with 3 dB bandwidths up to 11 THz[J]. Optics Letters, 46, 2738-2741(2021).

    [47] Qiu H Y, Jiang J F, Hu T et al. Silicon add-drop filter based on multimode Bragg sidewall gratings and adiabatic couplers[J]. Journal of Lightwave Technology, 35, 1705-1709(2017).

    [48] Jiang J F, Qiu H Y, Wang G C et al. Silicon lateral-apodized add-drop filter for on-chip optical interconnection[J]. Applied Optics, 56, 8425-8429(2017).

    [49] Oser D, Mazeas F, Le Roux X et al. Coherency-broken Bragg filters: overcoming on-chip rejection limitations[J]. Laser & Photonics Reviews, 13, 1800226(2019).

    [50] Liu D J, Wu H, Dai D X. Silicon multimode waveguide grating filter at 2 μm[J]. Journal of Lightwave Technology, 37, 2217-2222(2019).

    [51] Liu D J, Zhang M, Shi Y C et al. Four-channel CWDM (de)multiplexers using cascaded multimode waveguide gratings[J]. IEEE Photonics Technology Letters, 32, 192-195(2020).

    [52] Liu D J, Zhang M, Dai D X. Low-loss and low-crosstalk silicon triplexer based on cascaded multimode waveguide gratings[J]. Optics Letters, 44, 1304-1307(2019).

    [53] Liu D J, Dai D X. Silicon-based polarization-insensitive optical filter with dual-gratings[J]. Optics Express, 27, 20704-20710(2019).

    [54] Li C L, Liu D J, Dai D X. Multimode silicon photonics[J]. Nanophotonics, 8, 227-247(2018).

    [55] Dai D X, Wang Z, Julian N et al. Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides[J]. Optics Express, 18, 27404-27415(2010).

    [56] Bauters J F, Heck M J R, Dai D et al. Ultralow-loss planar Si3N4 waveguide polarizers[J]. IEEE Photonics Journal, 5, 6600207(2013).

    [57] Guan X W, Chen P X, Chen S T et al. Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide[J]. Optics Letters, 39, 4514-4517(2014).

    [58] Xiong Y L, Xu D X, Schmid J H et al. High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering[J]. IEEE Photonics Journal, 7, 1-7(2015).

    [59] Kim D W, Lee M H, Kim Y et al. Ultracompact transverse magnetic mode-pass filter based on one-dimensional photonic crystals with subwavelength structures[J]. Optics Express, 24, 21560-21565(2016).

    [60] Xu H N, Shi Y C. On-chip silicon TE-pass polarizer based on asymmetrical directional couplers[J]. IEEE Photonics Technology Letters, 29, 861-864(2017).

    [61] Zafar H, Moreira P, Taha A M et al. Compact silicon TE-pass polarizer using adiabatically-bent fully-etched waveguides[J]. Optics Express, 26, 31850-31860(2018).

    [62] Zhou W, Cheng Z Z, Zhu B Q et al. Hyperuniform disordered network polarizers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 288-294(2016).

    [63] Bai B W, Yang F H, Zhou Z P. Demonstration of an on-chip TE-pass polarizer using a silicon hybrid plasmonic grating[J]. Photonics Research, 7, 289-293(2019).

    [64] Xu H N, Dai D X, Shi Y C. Anisotropic metamaterial-assisted all-silicon polarizer with 415-nm bandwidth[J]. Photonics Research, 7, 1432-1439(2019).

    [65] Wu H, Tan Y, Dai D X. Ultra-broadband high-performance polarizing beam splitter on silicon[J]. Optics Express, 25, 6069-6075(2017).

    [66] Xu H N, Dai D X, Shi Y C. Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials[J]. Laser & Photonics Reviews, 13, 1800349(2019).

    [67] Dai D X, Wu H. Realization of a compact polarization splitter-rotator on silicon[J]. Optics Letters, 41, 2346-2349(2016).

    [68] Zhao W K, Liu R R, Peng Y Y et al. High-performance silicon polarization switch based on a Mach-Zehnder interferometer integrated with polarization-dependent mode converters[J]. Nanophotonics, 11, 2293-2301(2022).

    [69] Wang J, Liang D, Tang Y B et al. Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler[J]. Optics Letters, 38, 4-6(2013).

    [70] Lu Z Q, Wang Y, Zhang F et al. Wideband silicon photonic polarization beam splitter based on point-symmetric cascaded broadband couplers[J]. Optics Express, 23, 29413-29422(2015).

    [71] Chen S T, Wu H, Dai D X. High extinction-ratio compact polarisation beam splitter on silicon[J]. Electronics Letters, 52, 1043-1045(2016).

    [72] Li C L, Dai D X. Compact polarization beam splitter based on a three-waveguide asymmetric coupler with a 340-nm-thick silicon core layer[J]. Journal of Lightwave Technology, 36, 2129-2134(2018).

    [73] Guan X W, Wu H, Shi Y C et al. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide[J]. Optics Letters, 39, 259-262(2014).

    [74] Huang Y W, Tu Z, Yi H X et al. Polarization beam splitter based on cascaded step-size multimode interference coupler[J]. Optical Engineering, 52, 077103(2013).

    [75] Hu T, Qiu H D, Zhang Z C et al. A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch[J]. IEEE Photonics Journal, 8, 4802209(2016).

    [76] Frellsen L F, Ding Y H, Sigmund O et al. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides[J]. Optics Express, 24, 16866-16873(2016).

    [77] Li C L, Zhang M, Bowers J E et al. Ultra-broadband polarization beam splitter with silicon subwavelength-grating waveguides[J]. Optics Letters, 45, 2259-2262(2020).

    [78] Yin M, Yang W, Li Y P et al. CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter[J]. Optics Communications, 335, 48-52(2015).

    [79] Kim D W, Lee M H, Kim Y et al. Planar-type polarization beam splitter based on a bridged silicon waveguide coupler[J]. Optics Express, 23, 998-1004(2015).

    [80] Chen S T, Wu H, Dai D X. High extinction-ratio compact polarisation beam splitter on silicon[J]. Electronics Letters, 52, 1043-1045(2016).

    [81] Zhang Y, He Y, Wu J Y et al. High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations[J]. Optics Express, 24, 6586-6593(2016).

    [82] Ong J R, Ang T Y L, Sahin E et al. Broadband silicon polarization beam splitter with a high extinction ratio using a triple-bent-waveguide directional coupler[J]. Optics Letters, 42, 4450-4453(2017).

    [83] Li C L, Dai D X. Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer[J]. Optics Letters, 42, 4243-4246(2017).

    [84] Xu L H, Wang Y, El-Fiky E et al. Compact broadband polarization beam splitter based on multimode interference coupler with internal photonic crystal for the SOI platform[J]. Journal of Lightwave Technology, 37, 1231-1240(2019).

    [85] Dai D X, Bowers J E. Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires[J]. Optics Express, 19, 10940-10949(2011).

    [86] Dai D X, Tang Y B, Bowers J E. Mode conversion in tapered submicron silicon ridge optical waveguides[J]. Optics Express, 20, 13425-13439(2012).

    [87] Dai D X, Zhang M. Mode hybridization and conversion in silicon-on-insulator nanowires with angled sidewalls[J]. Optics Express, 23, 32452-32464(2015).

    [88] Xu H N, Shi Y C. Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide[J]. Optics Express, 25, 18485-18491(2017).

    [89] Ma M L, Park A H K, Wang Y et al. Sub-wavelength grating-assisted polarization splitter-rotators for silicon-on-insulator platforms[J]. Optics Express, 27, 17581-17591(2019).

    [90] Tan K, Huang Y, Lo G Q et al. Experimental realization of an O-band compact polarization splitter and rotator[J]. Optics Express, 25, 3234-3241(2017).

    [91] Yuan C, Dai J C, Jia H et al. Design of a C-band polarization rotator-splitter based on a mode-evolution structure and an asymmetric directional coupler[J]. Journal of Semiconductors, 39, 124008(2018).

    [92] Xie C J, Zou X H, Li P X et al. Ultracompact silicon polarization splitter-rotator using a dual-etched and tapered coupler[J]. Applied Optics, 59, 9540-9547(2020).

    [93] Lin Z J, Lin Y M, Li H et al. High-performance polarization management devices based on thin-film lithium niobate[J]. Light: Science & Applications, 11, 93(2022).

    [94] Fazea Y, Mezhuyev V. Selective mode excitation techniques for mode-division multiplexing: a critical review[J]. Optical Fiber Technology, 45, 280-288(2018).

    [95] Uematsu T, Ishizaka Y, Kawaguchi Y et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission[J]. Journal of Lightwave Technology, 30, 2421-2426(2012).

    [96] Wang J, Chen P, Chen S et al. Improved 8-channel silicon mode demultiplexer with grating polarizers[J]. Optics Express, 22, 12799-12807(2014).

    [97] Chen W W, Wang P J, Yang T J et al. Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions[J]. Optics Letters, 41, 2851-2854(2016).

    [98] He Y, Zhang Y, Zhu Q M et al. Silicon high-order mode (de)multiplexer on single polarization[J]. Journal of Lightwave Technology, 36, 5746-5753(2018).

    [99] Chack D, Hassan S, Qasim M. Broadband and low crosstalk silicon on-chip mode converter and demultiplexer for mode division multiplexing[J]. Applied Optics, 59, 3652-3659(2020).

    [100] Zhou H L, Wang Y L, Gao X Y et al. Dielectric metasurfaces enabled ultradensely integrated multidimensional optical system[J]. Laser & Photonics Reviews, 16, 2100521(2022).

    [101] Dai D X, Wang S P. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Frontiers of Optoelectronics, 9, 450-465(2016).

    [102] Wang J, He S L, Dai D X. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing[J]. Laser & Photonics Reviews, 8, L18-L22(2014).

    [103] Dai D X, Li C L, Wang S P et al. 10-channel mode (de)multiplexer with dual polarizations[J]. Laser & Photonics Reviews, 12, 1700109(2018).

    [104] González-Andrade D, Wangüemert-Pérez J G, Velasco A V et al. Ultra-broadband mode converter and multiplexer based on sub-wavelength structures[J]. IEEE Photonics Journal, 10, 2201010(2018).

    [105] Huang Y Y, Xu G Y, Ho S T. An ultracompact optical mode order converter[J]. IEEE Photonics Technology Letters, 18, 2281-2283(2006).

    [106] Chen D G, Xiao X, Wang L et al. Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers[J]. Optics Express, 23, 11152-11159(2015).

    [107] Liu Q, Gu Z H, Kee J S et al. Silicon waveguide filter based on cladding modulated anti-symmetric long-period grating[J]. Optics Express, 22, 29954-29963(2014).

    [108] Li Z Y, Kim M H, Wang C et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces[J]. Nature Nanotechnology, 12, 675-683(2017).

    [109] Jia H, Zhou T, Fu X et al. Inverse-design and demonstration of ultracompact silicon meta-structure mode exchange device[J]. ACS Photonics, 5, 1833-1838(2018).

    [110] Ohana D, Desiatov B, Mazurski N et al. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides[J]. Nano Letters, 16, 7956-7961(2016).

    [111] Guo J S, Ye C C, Liu C Y et al. Ultra-compact and ultra-broadband guided-mode exchangers on silicon[J]. Laser & Photonics Reviews, 14, 2000058(2020).

    [112] Xiang J L, Tao Z Y, Li X F et al. Metamaterial-enabled arbitrary on-chip spatial mode manipulation[J]. Light: Science & Applications, 11, 168(2022).

    [113] Guo J S, Ye C C, Liu C Y et al. Ultra-compact and ultra-broadband guided-mode exchangers on silicon[J]. Laser & Photonics Review, 14, 2000058(2020).

    [114] Dai D X. Multimode optical waveguide enabling microbends with low inter-mode crosstalk for mode-multiplexed optical interconnects[J]. Optics Express, 22, 27524-27534(2014).

    [115] Sun C L, Yu Y, Chen G Y et al. Ultra-compact bent multimode silicon waveguide with ultralow inter-mode crosstalk[J]. Optics Letters, 42, 3004-3007(2017).

    [116] Gabrielli L H, Liu D, Johnson S G et al. On-chip transformation optics for multimode waveguide bends[J]. Nature Communications, 3, 1217(2012).

    [117] Xu H N, Shi Y C. Ultra-sharp multi-mode waveguide bending assisted with metamaterial-based mode converters[J]. Laser & Photonics Reviews, 12, 1700240(2018).

    [118] Jiang X H, Wu H, Dai D X. Low-loss and low-crosstalk multimode waveguide bend on silicon[J]. Optics Express, 26, 17680-17689(2018).

    [119] Wu H, Li C L, Song L J et al. Ultra-sharp multimode waveguide bends with subwavelength gratings[J]. Laser & Photonics Reviews, 13, 1800119(2019).

    [120] Wang Y, Dai D X. Multimode silicon photonic waveguide corner-bend[J]. Optics Express, 28, 9062-9071(2020).

    [121] Xie H C, Liu Y J, Li W X et al. Demonstration of an ultra-compact bend for four modes based on pixelated meta-structure[C](2020).

    [122] Sun S S, Dong P H, Zhang F C et al. Inverse design of ultra-compact multimode waveguide bends based on the free-form curves[J]. Laser & Photonics Reviews, 15, 2100162(2021).

    [123] Xu H N, Shi Y C. Dual-mode waveguide crossing utilizing taper-assisted multimode-interference couplers[J]. Optics Letters, 41, 5381-5384(2016).

    [124] Chang W J, Lu L, Ren X S et al. An ultracompact multimode waveguide crossing based on subwavelength asymmetric Y-junction[J]. IEEE Photonics Journal, 10, 4501008(2018).

    [125] Chang W J, Lu L, Ren X S et al. Ultracompact dual-mode waveguide crossing based on subwavelength multimode-interference couplers[J]. Photonics Research, 6, 660-665(2018).

    [126] Xu H N, Shi Y C. Metamaterial-based Maxwell′s fisheye lens for multimode waveguide crossing[J]. Laser & Photonics Reviews, 12, 1800094(2018).

    [127] Sun C L, Yu Y, Zhang X L. Ultra-compact waveguide crossing for a mode-division multiplexing optical network[J]. Optics Letters, 42, 4913-4916(2017).

    [128] Li S Y, Zhou Y Y, Dong J J et al. Universal multimode waveguide crossing based on transformation optics: publisher’s note[J]. Optica, 6, 125(2019).

    [129] Zhao W K, Yi X L, Peng Y Y et al. Silicon multimode waveguide crossing based on anisotropic subwavelength gratings[J]. Laser & Photonics Reviews, 16, 2100623(2022).

    [130] Xu H N, Shi Y C. Ultra-broadband dual-mode 3 dB power splitter based on a Y-junction assisted with mode converters[J]. Optics Letters, 41, 5047-5050(2016).

    [131] Ye C C, Zhang M, Shi Y C et al. Broadband dual-mode 2×2 3 dB multimode interference couplers with a shallowly etched multimode section[J]. Applied Optics, 59, 7308-7312(2020).

    [132] Yin Y L, Li Z Y, Dai D X. Ultra-broadband polarization splitter-rotator based on the mode evolution in a dual-core adiabatic taper[J]. Journal of Lightwave Technology, 35, 2227-2233(2017).

    [133] Dai D X. Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides[J]. Journal of Lightwave Technology, 30, 3281-3287(2012).

    [134] Dai D. Advanced passive silicon photonic devices with asymmetric waveguide structures[J]. Proceedings of the IEEE, 106, 2117-2143(2018).

    [135] Huang Q Z, Liu Q, Xia J S. Traveling wave-like Fabry-Perot resonator-based add-drop filters[J]. Optics Letters, 42, 5158-5161(2017).

    [136] Huang Q Z, Jie K, Liu Q et al. Ultra-compact, broadband tunable optical bandstop filters based on a multimode one-dimensional photonic crystal waveguide[J]. Optics Express, 24, 20542-20553(2016).

    [137] Zhang L, Jie L L, Zhang M et al. Ultrahigh-Q silicon racetrack resonators[J]. Photonics Research, 8, 684-689(2020).

    [138] Zhang L, Hong S H, Wang Y et al. Ultralow-loss silicon photonics beyond the singlemode regime[J]. Laser & Photonics Reviews, 16, 2100292(2022).

    [139] Hong S H, Zhang L, Wang Y et al. Ultralow-loss compact silicon photonic waveguide spirals and delay lines[J]. Photonics Research, 10, 1-7(2022).

    [140] Song L J, Li H, Dai D X. Mach-Zehnder silicon-photonic switch with low random phase errors[J]. Optics Letters, 46, 78-81(2021).

    [141] Song L J, Chen T N, Liu W X et al. Toward calibration-free Mach-Zehnder switches for next-generation silicon photonics[J]. Photonics Research, 10, 793-801(2022).

    [142] Feng L T, Zhang M, Zhou Z Y et al. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom[J]. Nature Communications, 7, 11985(2016).

    [143] Feng L T, Zhang M, Xiong X et al. On-chip transverse-mode entangled photon pair source[J]. npj Quantum Information, 5, 2(2019).

    [144] Feng L T, Zhang M, Xiong X et al. Transverse mode-encoded quantum gate on a silicon photonic chip[J]. Physical Review Letters, 128, 060501(2022).

    [145] He Y, Zhang Y, Wang H W et al. Design and experimental demonstration of a silicon multi-dimensional (de)multiplexer for wavelength-, mode- and polarization-division (de)multiplexing[J]. Optics Letters, 45, 2846-2849(2020).

    [146] Wang J, Chen S T, Dai D X. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects[J]. Optics Letters, 39, 6993-6996(2014).

    [147] Dai D X, Wang J, Chen S T et al. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength- and mode-division-multiplexing[J]. Laser & Photonics Reviews, 9, 339-344(2015).

    [148] Wang S P, Wu H, Zhang M et al. A 32-channel hybrid wavelength-/mode-division (de) multiplexer on silicon[J]. IEEE Photonics Technology Letters, 30, 1194-1197(2018).

    [149] Tan Y, Wu H, Wang S P et al. Silicon-based hybrid demultiplexer for wavelength- and mode-division multiplexing[J]. Optics Letters, 43, 1962-1965(2018).

    [150] Jia H, Zhou T, Zhang L et al. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip[J]. Optics Express, 25, 20698-20707(2017).

    [151] Stern B, Zhu X L, Chen C P et al. On-chip mode-division multiplexing switch[J]. Optica, 2, 530-535(2015).

    [152] Cao X P, Zheng S, Zhou N et al. On-chip multi-dimensional 1×4 selective switch with simultaneous mode-/polarization-/wavelength-division multiplexing[J]. IEEE Journal of Quantum Electronics, 56, 8400608(2020).

    [153] Wang S P, Feng X L, Gao S M et al. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems[J]. Optics Letters, 42, 2802-2805(2017).

    [154] Jia H, Zhang L, Ding J F et al. Microring modulator matrix integrated with mode multiplexer and de-multiplexer for on-chip optical interconnect[J]. Optics Express, 25, 422-430(2017).

    Tools

    Get Citation

    Copy Citation Text

    Dajian Liu, Weike Zhao, Long Zhang, Lijia Song, Jingshu Guo, Yiwei Xie, Huan Li, Zejie Yu, Liu Liu, Yaocheng Shi, Daoxin Dai. High-Performance Passive Silicon Photonic Waveguide Devices: Progress and Challenges[J]. Acta Optica Sinica, 2022, 42(17): 1713001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integrated Optics

    Received: Jul. 15, 2022

    Accepted: Aug. 8, 2022

    Published Online: Sep. 16, 2022

    The Author Email: Dai Daoxin (dxdai@zju.edu.cn)

    DOI:10.3788/AOS202242.1713001

    Topics