Optics and Precision Engineering, Volume. 32, Issue 24, 3658(2024)
Airborne point cloud classification integrating edge convolution and global-local self-attention
[1] B LUO, J YANG, S SONG et al. Target classification of similar spatial characteristics in complex urban areas by using multispectral LiDAR. Remote Sensing, 14, 238(2022).
[2] P X ZHANG, Q WANG, R J GAO et al. Ground point cloud segmentation based on local threshold adaptive method. Opt. Precision Eng., 31, 2564-2572(2023).
[3] 徐婕, 刘慧, 沈跃. 基于改进PointNet++模型的苗圃树木点云分类与分割. 中国激光, 51, 193-203(2024).
J XU, H LIU, Y SHEN et al. Point clouds classification and segmentation for nursery trees based on improved PointNet++Model. Chinese Journal of Lasers, 51, 193-203(2024).
[4] J KACPER, P WIOLETA. Point cloud does matter. Selected issues of using airborne LiDAR elevation data in geomorphometric studies of rugged sandstone terrain under forest-Case study from Central Europe. Geomorphology, 412, 108316(2022).
[5] K ZHOU, R LINDENBERGH, B GORTE et al. LiDAR-guided dense matching for detecting changes and updating of buildings in Airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 200-213(2020).
[6] Z DAI, R HE, H T WANG et al. Adaptive single tree extraction method based on fusion of airborne lidar and vegetation index. Opt. Precision Eng., 31, 3331-3344(2023).
[7] 龚建宗. 机载激光雷达在山区输电线路设计中的应用. 测绘与空间地理信息, 47, 170-172(2024).
J Z GONG. Application of airborne LiDAR data in transmission line design in mountainous area. Geomatics & Spatial Information Technology, 47, 170-172(2024).
[8] E HORVÁTH, C POZNA, M UNGER. Real-time LIDAR-based urban road and sidewalk detection for autonomous vehicles. Sensors, 22, 194(2021).
[9] 李峙含, 花海洋, 张浩. 基于对比学习的高光谱和LiDAR地物分类方法. 激光与光电子学进展, 60, 3788(2023).
Z H LI, H Y HUA, H ZHANG. Classification based on hyperspectral image and LiDAR data with contrastive learning. Laser & Optoelectronics Progress, 60, 3788(2023).
[10] J M TU, Y SHEN, J LI et al. On-board point cloud roof plane segmentation for voxel and point hybrid growth. Chinese Journal of Lasers, 51, 2210002(2024).
涂静敏, 沈阳, 李婕. 体素与点混合增长的机载点云屋顶平面分割. 中国激光, 51, 2210002(2024).
[11] J LI, Q Q LI, L LI et al. An airborne point cloud roof plane extraction algorithm based on deep learning. Laser Technology, 48, 628(2024).
李婕, 李青清, 李礼. 基于深度学习的机载点云屋顶平面提取算法. 激光技术, 48, 628(2024).
[12] J X ZHANG, X G LIN, X NING. SVM-based classification of segmented airborne LiDAR point clouds in urban areas. Remote Sens, 5, 3749-3775(2013).
[13] M Y HE, Y L CHENG, X J LIAO et al. Building extraction algorithm by fusing spectral and geometrical features. Laser & Optoelectronics Progress, 55(2018).
[14] D MUNOZ, N VANDAPEL, M HEBERT. Onboard contextual classification of 3-D point clouds with learned high-order markov random fields, 2009-2016(2009).
[15] J NIEMEYER, F ROTTENSTEINER, U SOERGEL. Contextual classification of lidar data and building object detection in urban areas. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 152-165(2014).
[16] X X GENG.
耿笑笑. LiDAR点云多尺度注意力语义分割方法研究(2022).
[17] T RABBANI, F VAN DEN HEUVEL, G VOSSELMANN. Segmentation of point clouds using smoothness constraint. International archives of photogrammetry, remote sensing and spatial information sciences, 36, 248-253(2006).
[18] X Z CHEN, H M MA, J WAN et al. Multi-view 3D object detection network for autonomous driving, 6526-6534(2017).
[19] R Q CHARLES, S HAO, K C MO et al. PointNet: deep learning on point sets for 3d classification and segmentation, 77-85(2017).
[20] C QI, L YI, H SU et al. PointNet++: deep hierarchical feature learning on point sets in a metric space. Advances in Neural Information Processing Systems, 5105-5114(2017).
[21] D W LI, G L SHI, Y H WU et al. Multi-scale neighborhood feature extraction and aggregation for point cloud segmentation. IEEE Transactions on Circuits and Systems for Video Technology, 31, 2175-2191(2021).
[22] H S ZHAO, L JIANG, J Y JIA et al. Point transformer, 16239-16248(2021).
[23] 徐田野, 丁海勇. 基于融合图卷积的深度学习点云分类方法. 激光与光电子学进展, 59(2022).
T Y XU, H Y DING. Deep learning point cloud classification method based on fusion graph convolution. Laser & Optoelectronics Progress, 59(2022).
[24] B BAI. Application analysis of airborne LiDAR in large-scale topographic mapping. Geomatics & Spatial Information Technology, 47, 186-188, 192(2024).
白斌. 机载
[25] M ZAHEER, G GURUGANESH, K A DUBEY et al. Big bird: Transformers for longer sequences. Advances in neural information processing systems, 33, 17283-17297(2020).
[26] J H LI, M WEINMANN, X SUN et al. VD-LAB: a view-decoupled network with local-global aggregation bridge for airborne laser scanning point cloud classification. ISPRS Journal of Photogrammetry and Remote Sensing, 186, 19-33(2022).
[27] J NIEMEYER, F ROTTENSTEINER, U SOERGEL. Contextual classification of lidar data and building object detection in urban areas. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 152-165(2014).
[28] X F HAN, C LIU, Y Z ZHOU et al. WHU-Urban3D: an urban scene LiDAR point cloud dataset for semantic instance segmentation. ISPRS Journal of Photogrammetry and Remote Sensing, 209, 500-513(2024).
[29] 刘盛, 曹益烽, 黄文豪. 融合稀疏注意力和实例增强的雷达点云分割. 中国图象图形学报, 28, 483-494(2023).
S LIU, Y F CAO, W H HUANG et al. LiDAR point cloud semantic segmentation combined with sparse attention and instance enhancement. Journal of Image and Graphics, 28, 483-494(2023).
[30] A V PHAN, M LE NGUYEN, Y NGUYEN et al. DGCNN: a convolutional neural network over large-scale labeled graphs. Neural Networks, 108, 533-543(2018).
[31] D HORVAT, B ŽALIK, D MONGUS. Context-dependent detection of non-linearly distributed points for vegetation classification in airborne LiDAR. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 1-14(2016).
[32] Z S YANG, W S JIANG, B XU et al. A convolutional neural network-based 3D semantic labeling method for ALS point clouds. Remote Sensing, 9, 936(2017).
[33] S L WANG, S SUO, W C MA et al. Deep parametric continuous convolutional neural networks, 2589-2597(2018).
[34] M YOUSEFHUSSIEN, D J KELBE, E J IENTILUCCI et al. A multi-scale fully convolutional network for semantic labeling of 3D point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 143, 191-204(2018).
[35] Q Y HU, B YANG, L H XIE et al. RandLA-net: efficient semantic segmentation of large-scale point clouds, 11105-11114(2020).
[37] X LAI, J H LIU, L JIANG et al. Stratified transformer for 3D point cloud segmentation, 8490-8499(2022).
Get Citation
Copy Citation Text
Jingmin TU, Jin YAN, Li LI, Jian YAO, Jie LI, Yanfei KANG. Airborne point cloud classification integrating edge convolution and global-local self-attention[J]. Optics and Precision Engineering, 2024, 32(24): 3658
Category:
Received: Jul. 8, 2024
Accepted: --
Published Online: Mar. 11, 2025
The Author Email: LI Jie (jielonline@hbut.edu.cn)