Optics and Precision Engineering, Volume. 32, Issue 24, 3658(2024)

Airborne point cloud classification integrating edge convolution and global-local self-attention

Jingmin TU1, Jin YAN1, Li LI2, Jian YAO1,2, Jie LI1、*, and Yanfei KANG3
Author Affiliations
  • 1Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan430068, China
  • 2School of Remote Sensing and Information Engineering, Wuhan University, Wuhan430079, China
  • 3Wuhan Survey and Design Co., LTD., Wuhan40020,China
  • show less
    Figures & Tables(20)
    Overall network structure
    Flow chart of local feature extraction
    Schematic diagram of the GLAT module
    Schematic diagram of the local attention module
    Schematic diagram of the Global Attention module
    ISPRS-3D dataset
    WHU-Urban3D dataset
    ISPRS-3D data preprocessing
    Classification results of ISPRS-3D dataset
    Classification results of WHU-Urban3D dataset
    Classification results of different models in ISPRS-3D dataset
    Classification results of different models in WHU-Urban3D dataset
    • Table 1. Parameter settings

      View table
      View in Article

      Table 1. Parameter settings

      KrOAAvg.F1
      150.181.865.2
      150.282.165.7
      150.381.764.9
      200.182.265.9
      200.282.566.2
      200.382.065.7
      250.181.965.4
      250.282.366.0
      250.382.165.8
    • Table 2. Confusion matrix and evaluation index of the classification results of ISPRS-3D

      View table
      View in Article

      Table 2. Confusion matrix and evaluation index of the classification results of ISPRS-3D

      Classp_ll_vi_scarf_hr_ff_es_bt_e
      p_l33.50.30.00.00.031.811.70.222.6
      l_v0.073.09.80.20.41.30.46.48.5
      i_s0.03.694.90.30.00.30.20.70.1
      car0.011.214.058.23.72.40.68.61.3
      f_h0.012.11.60.624.51.20.548.111.4
      r_f0.11.40.00.00.093.71.71.41.8
      f_e0.26.20.51.60.223.150.15.812.3
      s_b0.015.60.40.51.33.21.953.224.0
      t_e0.04.70.00.10.21.71.38.783.4
      Precision69.685.188.577.650.592.970.943.677.4
      Recall33.573.094.958.224.593.750.153.283.4
      F1 score45.978.691.666.533.093.358.747.980.3
    • Table 3. Confusion matrix and evaluation index of the classification results of WHU-Urban3D

      View table
      View in Article

      Table 3. Confusion matrix and evaluation index of the classification results of WHU-Urban3D

      Classb_dt_ev_gl_vl_ge_cg_do_tv_h
      b_d93.22.73.40.30.10.20.00.20.0
      t_e5.279.09.34.70.40.30.00.30.9
      v_g3.32.688.51.30.00.00.52.31.6
      l_v4.25.28.974.10.00.00.25.12.3
      l_g10.617.88.10.251.77.50.03.90.3
      e_c8.14.21.30.06.977.00.02.60.0
      g_d0.40.12.71.60.20.193.31.30.4
      o_t9.85.37.46.06.78.21.951.43.4
      v_h2.51.74.312.71.30.011.17.459.0
      Precision92.892.286.174.381.377.892.560.878.1
      Recall93.279.088.574.151.777.093.351.459.0
      F1 score93.085.187.374.263.277.492.955.767.2
    • Table 4. Ablation experiments on ISPRS-3D dataset

      View table
      View in Article

      Table 4. Ablation experiments on ISPRS-3D dataset

      ClassF1 scoreOA
      p_ll_vi_scarf_hr_ff_es_bt_e
      PT41.476.989.158.824.491.657.941.677.981.1
      PT-GA61.379.090.071.625.992.661.836.976.981.6
      PT-EC51.780.591.258.019.990.860.640.174.981.4
      Ours(PT-GA-EC)45.978.691.666.533.093.358.747.980.382.5
    • Table 5. Ablation experiments on the WHU-Urban3D dataset

      View table
      View in Article

      Table 5. Ablation experiments on the WHU-Urban3D dataset

      MethodF1 scoreOA
      b_dt_ev_gl_vl_ge_cg_do_tv_h
      PT91.479.984.771.652.373.889.944.058.284.0
      PT-GA92.882.586.975.658.376.793.152.360.285.9
      PT-EC92.282.986.272.954.675.791.348.468.085.5
      Ours(PT-GA-E)93.085.187.374.263.277.492.955.767.287.4
    • Table 6. Classification results of different methods on ISPRS-3D dataset

      View table
      View in Article

      Table 6. Classification results of different methods on ISPRS-3D dataset

      MethodF1 scoreOAAvg.F1
      p_ll_vi_scarf_hr_ff_es_bt_e
      PointNet52.670.083.311.27.574.87.824.645.465.741.9
      PointNet++54.780.590.372.435.689.550.242.373.181.065.4
      DGCNN45.280.689.677.129.690.055.341.274.881.164.9
      RandLANet48.778.287.368.137.291.157.845.377.481.565.6
      PointMLP54.878.390.869.832.289.456.141.576.381.465.4
      Stratified transformer51.880.990.566.735.190.256.444.276.081.665.7
      Ours45.978.691.666.533.093.358.747.980.382.566.2
    • Table 7. Classification results of different methods on the WHU-Urban3D dataset unit

      View table
      View in Article

      Table 7. Classification results of different methods on the WHU-Urban3D dataset unit

      MethodF1 scoreOAAvg.F1
      b_dt_ev_gl_vl_ge_cg_do_tv_h
      PointNet81.654.373.843.551.767.888.531.346.270.559.8
      PointNet++90.175.383.571.362.782.591.346.471.185.374.9
      DGCNN91.377.887.470.860.174.591.747.277.485.675.3
      RandLANet91.779.388.171.863.579.791.553.766.986.276.2
      PointMLP92.480.886.273.162.775.390.354.568.286.075.9
      Stratified transformer92.681.287.572.664.176.591.253.868.586.576.4
      Ours93.085.187.374.263.277.492.955.767.287.477.3
    • Table 8. Classification results of the proposed method and the existing methods on the ISPRS 3D

      View table
      View in Article

      Table 8. Classification results of the proposed method and the existing methods on the ISPRS 3D

      MethodF1 scoreOAAvg.F1
      p_ll_vi_scarf_hr_ff_es_bt_e
      UM46.179.089.147.75.292.252.740.977.980.859.0
      WhuY231.980.088.940.824.593.149.441.177.381.058.6
      WhuY337.181.490.163.423.993.447.539.978.082.361.6
      BIJ_W13.878.590.556.436.392.253.243.378.481.560.3
      RIT_l37.577.991.573.418.094.049.345.982.581.663.3
      Ours45.978.691.666.533.093.358.747.980.382.566.2
    Tools

    Get Citation

    Copy Citation Text

    Jingmin TU, Jin YAN, Li LI, Jian YAO, Jie LI, Yanfei KANG. Airborne point cloud classification integrating edge convolution and global-local self-attention[J]. Optics and Precision Engineering, 2024, 32(24): 3658

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 8, 2024

    Accepted: --

    Published Online: Mar. 11, 2025

    The Author Email: LI Jie (jielonline@hbut.edu.cn)

    DOI:10.37188/OPE.20243224.3658

    Topics