Spectroscopy and Spectral Analysis, Volume. 42, Issue 8, 2353(2022)

A Comparative Study of the COD Hyperspectral Inversion Models in Water Based on the Maching Learning

Chun-ling WANG1,*... Kai-yuan SHI1,1; 2;, Xing MING3,3; *;, Mao-qin CONG3,3;, Xin-yue LIU3,3; and Wen-ji GUO3,3; |Show fewer author(s)
Author Affiliations
  • 11. School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
  • 33. Nanjing Institute of Software Technology, Institute of Software Chinese Academy of Sciences, Nanjing 210049, China
  • show less
    References(11)

    [1] S Chander, A Gujrati, A Hakeem K et al. Current Science, 116, 1172(2019).

    [2] A Gidudu, L Letaru, R Mugo et al. African Journal of Aquatic Science, 43, 141(2018).

    [3] H Ismail M, N Usali. Journal of Sustainable Development, 3, 228(2010).

    [6] T Hu Z, Y Zhou. Geospatial Information, 18, 4(2020).

    [7] F Li J, X Liu J, L Zhai W et al. Contribu-Tions to Geology and Mineral Resources Research, 35, 487(2020).

    [9] Y Cao, T Ye Y, L Zhao H. China Environmental Science, 37, 3940(2017).

    [10] K Blix, T Eltoft. Remote Sensing, 10, 775(2018).

    [11] S Hafeez, C Ho H, S Wong M et al. Remote Sensing, 11, 617(2019).

    [12] H Lu, X Ma. Chemosphere, 249, 126169(2020).

    [14] G Biau, E Scornet. Test, 25, 197(2016).

    [15] E Schapire R. Explaining Ababoost Empirical Inference, Springer, Berlin, Heidelberg, 37(2013).

    Tools

    Get Citation

    Copy Citation Text

    Chun-ling WANG, Kai-yuan SHI, Xing MING, Mao-qin CONG, Xin-yue LIU, Wen-ji GUO. A Comparative Study of the COD Hyperspectral Inversion Models in Water Based on the Maching Learning[J]. Spectroscopy and Spectral Analysis, 2022, 42(8): 2353

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Orginal Article

    Received: Jun. 15, 2021

    Accepted: --

    Published Online: Mar. 17, 2025

    The Author Email: WANG Chun-ling (wangchl@bjfu.edu.cn)

    DOI:10.3964/j.issn.1000-0593(2022)08-2353-06

    Topics