Journal of Synthetic Crystals, Volume. 53, Issue 10, 1712(2024)
Preparation and Epitaxy Application of 8 Inch SiC Wafers
[1] [1] CASADY J, JOHNSON R. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review[J]. Solid State Electron, 1996, 39(10): 1409-1422.
[2] [2] MORKO H, STRITE S, GAO G B, et al. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies[J]. Journal of Applied Physics, 1994, 76(3): 1363-1398.
[3] [3] EDDY C R Jr, GASKILL D K. Silicon carbide as a platform for power electronics[J]. Science, 2009, 324(5933): 1398-1400.
[4] [4] LEE T H, BHUNIA S, MEHREGANY M. Electromechanical computing at 500 ℃ with silicon carbide[J]. Science, 2010, 329(5997): 1316-1318.
[6] [6] WELLMANN P J. Review of SiC crystal growth technology[J]. Semiconductor Science and Technology, 2018, 33(10): 103001.
[7] [7] SHE X, HUANG A Q, LUCA , et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205.
[8] [8] Semiconductor engineering. SiC demand growing faster than supply[EB/OL].(2019-05-23)[2024-06-01]. https://semiengineering.com/sic-demand-growing-faster-than-supply/.
[9] [9] Compound semiconductor. Infineon tackles SiC supply shortages[EB/OL].(2018-12-19)[2024-06-01]. https://compoundsemiconductor.net/article/106023/Infineon_Tackles_SiC_Supply_Shortages%7BfeatureExtra%7D/.
[10] [10] MUSOLINO M, XU X P, WANG H, et al. Paving the way toward the world’s first 200 mm SiC pilot line[J]. Materials Science in Semiconductor Processing, 2021, 135: 106088.
[11] [11] Semiconductor TODAY. II-VI Advanced materials demos first 200 mm SiC wafer[EB/OL].(2015-07-17)[2024-06-01]. http://www.semiconductor-today.com/news_items/2015/jul/iivi_170715.shtml.
[12] [12] Wolfspeed, Inc. Wolfspeed opens the world’s largest 200 mm silicon carbide fab enabling highly anticipated device production [EB/OL].(2022-04-22)[2024-06-01]. https://www.wolfspeed.com/company/news-events/news/wolfspeed-opens-the-worlds-largest-200 mm-silicon-carbide-fab-enabling-highly-anticipated-device-production/.
[13] [13] REACTION-KDT JU. Reaction project introduction [EB/OL][2024-06-01]. http://www.reaction-ecsel.eu/.
[14] [14] CRIPPA D, AZADMAND M, MAUCERI M, et al. Opening through 200 mm silicon carbide epitaxy[J]. Materials Science Forum, 2022, 1062: 146-151.
[19] [19] ZHANG S T, FU G Q, CAI H D, et al. Design and optimization of thermal field for PVT method 8-inch SiC crystal growth[J]. Materials, 2023, 16(2): 767.
[20] [20] XU B J, HAN X F, XU S C, et al. Optimization of the thermal field of 8-inch SiC crystal growth by PVT method with ‘3 separation heater method’[J]. Journal of Crystal Growth, 2023, 614: 127238.
[25] [25] ZHANG Z, SUDARSHAN T S. Evolution of basal plane dislocations during 4H-silicon carbide homoepitaxy[J]. Applied Physics Letters, 2005, 87(16): 161917.
Get Citation
Copy Citation Text
HAN Jingrui, LI Xiguang, LI Yongmei, WANG Yaohao, ZHANG Qingchun, LI Da, SHI Jianxin, YAN Honglei, HAN Yuebin, TING Hungkit. Preparation and Epitaxy Application of 8 Inch SiC Wafers[J]. Journal of Synthetic Crystals, 2024, 53(10): 1712
Category:
Received: Jun. 18, 2024
Accepted: Jan. 17, 2025
Published Online: Jan. 17, 2025
The Author Email: Hungkit TING (ding.xiongjie@sicty.com)
CSTR:32186.14.