Acta Photonica Sinica, Volume. 52, Issue 3, 0352104(2023)
Analysis of the Application Progress in Laser-induced Breakdown Spectroscopy:A Review(Invited)
[1] KOARAI K, MATSUEDA M, AOKI J et al. Rapid analysis of 90Sr in cattle bone and tooth samples by inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 36, 1678-1682(2021).
[2] LI X, XIONG C, SUN K et al. Optimization of ICP-OES'S parameters for uranium analysis of rock samples[J]. Journal of the Korean Physical Society, 78, 737-742(2021).
[3] THUBKHUN N, TANGTREAMJITMUN N. Determination of nickel by flame atomic absorption spectrometry after preconcentration by coprecipitation with aluminum hydroxide[J]. Analytical Sciences, 34, 849-851(2018).
[4] COBO A, GARCÍA-ESCÁRZAGA A, RODRÍGUEZ-COBO L et al. Automated laser-induced breakdown spectroscopy setup for chemical mapping of archaeological shells[C], JM3A.38(2015).
[5] YUAN T, WANG Z, LI Z et al. A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy[J]. Analytica Chimica Acta, 807, 29-35(2014).
[6] AMODEO T, DUTOUQUET C, TENEGAL F et al. On-line monitoring of composite nanoparticles synthesized in a pre-industrial laser pyrolysis reactor using Laser-Induced Breakdown Spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 1183-1190(2008).
[7] LIU Y, ZHOU B, WANG W et al. Insertable, scabbarded, and nanoetched silver needle sensor for hazardous element depth profiling by laser-induced breakdown spectroscopy[J]. ACS Sens, 7, 1381-1389(2022).
[8] GUO L, ZHANG D, SUN L et al. Development in the application of laser-induced breakdown spectroscopy in recent years: A review[J]. Frontiers of Physics, 16, 45-69(2021).
[9] HE Y, LIU X, LV Y et al. Quantitative analysis of nutrient elements in soil using single and double-pulse laser-induced breakdown spectroscopy[J]. Sensors (Basel), 18, 1526(2018).
[10] ZHANG Y, DONG M, CHENG L et al. Improved measurement in quantitative analysis of coal properties using laser induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 35, 810-818(2020).
[11] OTTESEN D, WANG J, RADZIEMSKI L. Real-time laser spark spectroscopy of particulates in combustion environments[J]. Applied Spectroscopy, 43, 967-976(1989).
[12] NODA M, DEGUCHI Y, IWASAKI S et al. Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B, 527, 701-709(2001).
[13] BODY D, CHADWICK B. Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system[J]. Spectrochimica Acta Part B, 56, 725-736(2001).
[14] HE Y, WHIDDON R, WANG Z et al. Inhibition of sodium release from zhundong coal via the addition of mineral additives: online combustion measurement with Laser-Induced Breakdown Spectroscopy (LIBS)[J]. Energy & Fuels, 31, 1082-1090(2017).
[15] QIAN Yan, ZHONG Sha, HE Yong et al. Effects of laser wavelength on properties of coal LIBS Spectrum[J]. Spectroscopy and Spectral Analtsis, 37, 1890-1895(2017).
[16] XU X, LI A, WANG X et al. The high-accuracy prediction of carbon content in semi-coke by laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 35, 984-992(2020).
[17] PAN G, DONG M, YU J et al. Accuracy improvement of quantitative analysis of unburned carbon content in fly ash using laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 131, 26-31(2017).
[18] LIU R, DEGUCHI Y, NAN W et al. Unburned carbon measurement in fly ash using laser-induced breakdown spectroscopy with short nanosecond pulse width laser[J]. Advanced Powder Technology, 30, 1210-1218(2019).
[19] YIN W, LIU Y, ZHOU F et al. Rapid analysis of heavy metals in the coal ash with laser-induced breakdown spectroscopy[J]. Optik, 174, 550-557(2018).
[20] RONG K, WANG Z, HU R et al. Experimental study on mercury content in flue gas of coal-fired units based on laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 22, 75-82(2020).
[21] SHINN J. From coal to single-stage and two-stage products: a reactive model of coal structure[J]. Fuel, 63, 1187-1196(1984).
[22] YAN C, QI J, LIANG J et al. Determination of coal properties using laser-induced breakdown spectroscopy combined with kernel extreme learning machine and variable selection[J]. Journal of Analytical Atomic Spectrometry, 33, 2089-2097(2018).
[23] YAN C, ZHANG T, SUN Y et al. A hybrid variable selection method based on wavelet transform and mean impact value for calorific value determination of coal using laser-induced breakdown spectroscopy and kernel extreme learning machine[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 154, 75-81(2019).
[24] LEGNAIOLI S, CAMPANELLA B, PAGNOTTA S et al. Determination of ash content of coal by laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 155, 123-126(2019).
[25] LU P, ZHUO Z, ZHANG W et al. Accuracy improvement of quantitative LIBS analysis of coal properties using a hybrid model based on a wavelet threshold de-noising and feature selection method[J]. Applied Optics, 59, 6443-6451(2020).
[26] CHEN J, LI Q, LIU K et al. Correction of moisture interference in laser-induced breakdown spectroscopy detection of coal by combining neural networks and random spectral attenuation[J]. Journal of Analytical Atomic Spectrometry, 37, 1658-1664(2022).
[27] TIAN Z, LI X, WANG G et al. Elemental and proximate analysis of coal by X-ray fluorescence assisted laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 24, 084007(2022).
[28] QIN H, LU Z, YAO S et al. Combining laser-induced breakdown spectroscopy and Fourier-transform infrared spectroscopy for the analysis of coal properties[J]. Journal of Analytical Atomic Spectrometry, 34, 347-355(2019).
[29] YAO S, QIN H, WANG Q et al. Optimizing analysis of coal property using laser-induced breakdown and near-infrared reflectance spectroscopies[J]. Spectrochim Acta A Mol Biomol Spectrosc, 239, 118492(2020).
[30] DONG M, WEI L, GONZáLEZ J et al. Coal discrimination analysis using tandem laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma time-of-flight mass spectrometry[J]. Analytical Chemistry, 92, 7003-7010(2020).
[31] ZHANG W, ZHOU R, LIU K et al. Sulfur determination in laser-induced breakdown spectroscopy combined with resonance Raman scattering[J]. Talanta, 216, 120968(2020).
[32] RUNGE E, BONFIGLIO S, BRYAN F. Spectrochemical analysis of molten metal using a pulsed laser source[J]. Spectrochimica Acta, 22, 1678-1680(1966).
[33] CARLHOFF C, LORENZEN C, NICK K. Method and apparatus for optically coupling an element analysis system and a laser to liquid metal in a melting vessel[P]. US.
[34] ARAGÓN C, AGUILERA J, CAMPOS J. Determination of carbon content in molten steel using laser-induced breakdown spectroscopy[J]. Applied Spectroscopy, 47, 606-608(1993).
[35] AWADHESH K, FANG Y, JAGDISH P et al. High temperature fiber optic laser-induced breakdown spectroscopy sensor for analysis of molten alloy constituents[J]. Review of Scientific Instruments, 73, 3589-3599(2002).
[36] CABALíN L, DELGADO T, RUIZ J et al. Stand-off laser-induced breakdown spectroscopy for steel-grade intermix detection in sequence casting operations. At-line monitoring of temporal evolution versus predicted mathematical model[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 146, 93-100(2018).
[37] YANG J, LI X, LU H et al. An LIBS quantitative analysis method for alloy steel at high temperature based on transfer learning[J]. Journal of Analytical Atomic Spectrometry, 33, 1184-1195(2018).
[38] KASHIWAKURA S, WAGATSUMA K. Optimization of partial-least-square regression for determination of manganese in low-alloy steel by single-shot laser-induced breakdown spectroscopy[J]. ISIJ International, 58, 1705-1710(2018).
[39] DONG H, SUN L, QI L et al. A lightweight convolutional neural network model for quantitative analysis of phosphate ore slurry based on laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 36, 2528-2535(2021).
[40] GUO L, CHENG X, TANG Y et al. Improvement of spectral intensity and resolution with fiber laser for on-stream slurry analysis in laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 152, 38-43(2019).
[41] ZENG Q, PAN C, LI C et al. Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 142, 68-73(2018).
[42] LEDNEV V, GRISHIN M, SDVIZHENSKII P et al. Sample temperature effect on laser ablation and analytical capabilities of laser induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 34, 607-615(2019).
[43] GUDMUNDSSON S, MATTHIASSON J, BJÖRNSSON B et al. Quantitative in-situ analysis of impurity elements in primary aluminum processing using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 158, 105646(2019).
[44] CUI M, DEGUCHI Y, YAO C et al. Carbon detection in solid and liquid steel samples using ultraviolet long-short double pulse laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 167, 105839(2020).
[45] XIN Y, LI Y, CAI Z et al. On-line monitoring of elemental composition in molten aluminum by laser-induced breakdown spectroscopy online analyzer for liquid metal composition[J]. Metallurgical Analysis, 39, 15-20(2019).
[46] SUN Q, TRAN M, SMITH B et al. Winefordner. Zinc analysis in human skin by laser induced-breakdown spectroscopy[J]. Talanta, 52, 293-300(2000).
[47] JEFFERY M, TELLE H. LIBS and LIFS for rapid detection of Rb traces in blood[M], 152-161(4613).
[48] KHAN M, WANG Q, IDREES B et al. A review on laser-induced breakdown spectroscopy in different cancers diagnosis and classification[J]. Frontiers in Physics, 10, 821057(2022).
[49] YUE Z, SUN C, CHEN F et al. Machine learning-based LIBS spectrum analysis of human blood plasma allows ovarian cancer diagnosis[J]. Biomedical Optics Express, 12, 2559-2574(2021).
[50] MELIKECHI N, MARKUSHIN Y, CONNOLLY D et al. Age-specific discrimination of blood plasma samples of healthy and ovarian cancer prone mice using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 123, 33-41(2016).
[51] CHEN X, LI Xi, YU X et al. Diagnosis of human malignancies using laser-induced breakdown spectroscopy in combination with chemometric methods[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 139, 63-69(2018).
[52] CHEN X, LI X, YANG S et al. Discrimination of lymphoma using laser-induced breakdown spectroscopy conducted on whole blood samples[J]. Biomedical Optics Express, 9, 1057-1068(2018).
[53] CHU Y, CHEN F, SHENG Z et al. Blood cancer diagnosis using ensemble learning based on a random subspace method in laser-induced breakdown spectroscopy[J]. Biomedical Optics Express, 11, 4191-4202(2020).
[54] HAN J, MOON Y, LEE J et al. Differentiation of cutaneous melanoma from surrounding skin using laser-induced breakdown spectroscopy[J]. Biomedical Optics Express, 7, 57-65(2016).
[55] GAUDIUSO R, EWUSI A, MELIKECHI N et al. Using LIBS to diagnose melanoma in biomedical fluids deposited on solid substrates: limits of direct spectral analysis and capability of machine learning[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 146, 106-114(2018).
[56] KHAN M, WANG Q, IDREES B et al. Discrimination of melanoma using laser-induced breakdown spectroscopy conducted on human tissue samples[J]. Journal of Spectroscopy, 2020, 8826243(2020).
[57] TENG G, WANG Q, ZHANG H et al. Discrimination of infiltrative glioma boundary based on laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 165, 105787(2020).
[58] TENG G, WANG Q, YANG H et al. Pathological identification of brain tumors based on the characteristics of molecular fragments generated by laser ablation combined with a spiking neural network[J]. Biomedical Optics Express, 11, 4276-4289(2020).
[59] CHU Y, CHEN T, CHEN F et al. Discrimination of nasopharyngeal carcinoma serum using laser-induced breakdown spectroscopy combined with an extreme learning machine and random forest method[J]. Journal of Analytical Atomic Spectrometry, 33, 2083-2088(2018).
[60] WANG J, LI L, YANG P et al. Identification of cervical cancer using laser-induced breakdown spectroscopy coupled with principal component analysis and support vector machine[J]. Lasers in Medical Science, 33, 1381-1386(2018).
[61] LIN X, SUN H, GAO X et al. Discrimination of lung tumor and boundary tissues based on laser-induced breakdown spectroscopy and machine learning[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 180, 106200(2021).
[62] FENG Y, ZENG J, MA Q et al. Serum copper and zinc levels in breast cancer: A meta-analysis[J]. Journal of Trace Elements in Medicine and Biology, 62, 126629(2020).
[63] GAUDIUSO R, EWUSI A, XIA W et al. Diagnosis of Alzheimer's disease using laser-induced breakdown spectroscopy and machine learning[J]. Spectrochim Acta Part B at Spectrosc, 171, 105931(2020).
[64] BERLO K, XIA W, ZWILLICH F et al. Laser induced breakdown spectroscopy for the rapid detection of SARS-CoV-2 immune response in plasma[J]. Scientific Reports, 12, 1614(2022).
[65] BUSSER B, MONCAYO S, TRICHARD F et al. Characterization of foreign materials in paraffin-embedded pathological specimens using in situ multi-elemental imaging with laser spectroscopy[J]. Modern Pathology, 31, 378-384(2018).
[66] MOON Y, HAN J, CHOI J et al. Mapping of cutaneous melanoma by femtosecond laser-induced breakdown spectroscopy[J]. Journal of Biomedical Optics, 24, 1-6(2018).
[67] WEI H, ZHAO Z, LIN Q et al. Study on the molecular mechanisms against human breast cancer from insight of elemental distribution in tissue based on Laser-Induced Breakdown Spectroscopy (LIBS)[J]. Biological Trace Element Research, 199, 1686-1692(2021).
[68] ABBASI H, GUZMAN R, CATTIN P et al. All-fiber-optic LIBS system for tissue differentiation: A prospect for endoscopic smart laser osteotomy[J]. Optics and Lasers in Engineering, 148, 106765(2022).
[69] DAVID A, RADZIEMSKI L, THOMAS R et al. Spectrochemical analysis of liquids using the laser sparkpdf[J]. Applied Spectroscopy, 38, 721-729(1984).
[70] YUEH F, SHARMA R, SINGH J et al. Evaluation of the potential of laser-induced breakdown spectroscopy for detection of trace element in liquid[J]. Journal of the Air & Waste Management Association, 52, 1307-1315(2002).
[71] BARREDA F, TRICHARD F, BARBIER S et al. Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy[J]. Anal Bioanal Chem, 403, 2601-2610(2012).
[72] NAKANISHI R, OHBA H, SAEKI M et al. Highly sensitive detection of sodium in aqueous solutions using laser-induced breakdown spectroscopy with liquid sheet jets[J]. Optics Express, 29, 5205-5212(2021).
[73] CACERES1 J, TORNERO L, TELLE H et al. Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 56, 831-838(2001).
[74] ZHU D, CHEN J, LU J et al. Laser-induced breakdown spectroscopy for determination of trace metals in aqueous solution using bamboo charcoal as a solid-phase extraction adsorbent[J]. Analytical Methods, 4, 819-823(2012).
[75] MA S, GUO L, DONG D. A molecular laser-induced breakdown spectroscopy technique for the detection of nitrogen in water[J]. Journal of Analytical Atomic Spectrometry, 37, 663-667(2022).
[76] CHEN Z, LI H, ZHAO F et al. Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-deposition of the analytes on an aluminium surface[J]. Journal of Analytical Atomic Spectrometry, 23, 871-875(2008).
[77] MATSUMOTO A, TAMURA A, KODA R et al. On-site quantitative elemental analysis of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy combined with electrodeposition under controlled potential[J]. Analytical Chemistry, 87, 1655-1661(2015).
[78] CHEUNG N, EDWARD S. Single-shot elemental analysis of liquids based on laser[J]. Applied Spectroscopy, 47, 882-886(1993).
[79] RANDALL L, THOMAS M, JOSEPH R et al. Trace metal detection by laser-induced breakdown spectroscopy[J]. Applied Spectroscopy, 53, 1226-1236(1999).
[80] ZHANG D, HU Z, SU Y et al. Simple method for liquid analysis by laser-induced breakdown spectroscopy (LIBS)[J]. Optics Express, 26, 18794-18802(2018).
[81] ARAS N, YALçıN Ş. Investigating silicon wafer based substrates for dried-droplet analysis by laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 152, 84-92(2019).
[82] LIU Y, PAN J, HU Z et al. Stability improvement for dried droplet pretreatment by suppression of coffee ring effect using electrochemical anodized nanoporous tin dioxide substrate[J]. Mikrochim Acta, 187, 664(2020).
[83] LIU Y, PAN J, ZHANG G et al. Stable and ultrasensitive analysis of organic pollutants and heavy metals by dried droplet method with superhydrophobic-induced enrichment[J]. Analytica Chimica Acta, 1151, 338253(2021).
[84] MAJI S, KUMAR S, SUNDARARAJAN K. Enhanced laser induced breakdown spectroscopy signal intensity in colloids: an application for estimation of Cu and Cr in aqueous solution[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 175, 106010(2021).
[85] ZHANG Y, GAO X, ZHU H et al. Dual pulse laser induced breakdown spectroscopy on Cu concentration in CuSO4 solution with liquid jet[C](2017).
[86] PALÁSTI D, ALBRYCHT P, JANOVSZKY P et al. Nanoparticle enhanced laser induced breakdown spectroscopy of liquid samples by using modified surface-enhanced Raman scattering substrates[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 166, 105793(2020).
[87] POGGIALINI F, CAMPANELLA B, LEGNAIOLI S et al. Investigating double pulse nanoparticle enhanced laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 167, 105845(2020).
[88] POGGIALINI F, CAMPANELLA B, PALLESCHI V et al. Graphene thin film microextraction and nanoparticle enhancement for fast LIBS metal trace analysis in liquids[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 194, 106471(2022).
[89] WANG Q, GE T, LIU Y et al. Highly sensitive analysis of trace elements in aqueous solutions using surface-enhanced and discharge-assisted laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 37, 233-239(2022).
Get Citation
Copy Citation Text
Lianbo GUO, Xuechen NIU, Mengsheng ZHANG, Jiayuan ZHOU, Deng ZHANG, Bin LIU. Analysis of the Application Progress in Laser-induced Breakdown Spectroscopy:A Review(Invited)[J]. Acta Photonica Sinica, 2023, 52(3): 0352104
Category: Special Issue for Frontiers and Techniques of Laser Spectroscopy
Received: Oct. 24, 2022
Accepted: Nov. 25, 2022
Published Online: Jun. 21, 2023
The Author Email: Lianbo GUO (lbguo@hust.edu.cn), Bin LIU (918339559@qq.com)