Optics and Precision Engineering, Volume. 32, Issue 24, 3644(2024)

Dermoscopic image classification based on multi-scale and three-dimensional interaction feature optimization

Di WANG1, Xiaoqi LÜ1,2、*, and Jing LI1
Author Affiliations
  • 1School of Digital and Intelligence Industry, Inner Mongolia University of Science and Technology,Baotou0400, China
  • 2School of Information Engineering, Inner Mongolia University of Technology,Hohhot010051, China
  • show less
    References(33)

    [1] ARORA G, DUBEY A K, JAFFERY Z A et al. A comparative study of fourteen deep learning networks for multi skin lesion classification (MSLC) on unbalanced data[J]. Neural Computing and Applications, 35, 7989-8015(2023).

    [2] LAN X M, JIANG Y Q. Application of artificial intelligence in the diagnosis and treatment of melanoma[J]. The Chinese Journal of Dermatovenereology, 37, 855-860(2023).

         兰雪梅, 姜祎群. 人工智能在黑素瘤诊疗中的应用[J]. 中国皮肤性病学杂志, 37, 855-860(2023).

    [3] ARGENZIANO G, SOYER H P. Dermoscopy of pigmented skin lesions: a valuable tool for early diagnosis of melanoma[J]. The Lancet Oncology, 2, 443-449(2001).

    [4] LI D X, YANG F J, LIU Y et al. Skin lesion segmentation network with cross-attention coding[J]. Opt. Precision Eng., 32, 609-621(2024).

         李大湘, 杨福杰, 刘颖. 融入交叉注意力编码的皮肤病变分割网络[J]. 光学 精密工程, 32, 609-621(2024).

    [5] 宋建丽, 吕晓琪, 谷宇. 语义流引导采样结合注意力机制的脑肿瘤图像分割[J]. 光学 精密工程, 32, 565-577(2024).

         SONG J L, LÜ X Q, GU Y. Brain tumor image segmentation based on semantic flow guided sampling and attention mechanism[J]. Opt. Precision Eng., 32, 565-577(2024).

    [6] GU Y Y, GE Z Y, BONNINGTON C P et al. Progressive transfer learning and adversarial domain adaptation for cross-domain skin disease classification[J]. IEEE Journal of Biomedical and Health Informatics, 24, 1379-1393(2020).

    [7] GODLIN JASIL S P, ULAGAMUTHALVI V. Skin lesion classification using pre-trained densenet201 deep neural network[C], 393-396(2021).

    [8] SINGH S K, ABOLGHASEMI V, ANISI M H. Skin cancer diagnosis based on neutrosophic features with a deep neural network[J]. Sensors, 22, 6261(2022).

    [9] 李建威, 吕晓琪, 谷宇. 基于改进ConvNeXt的皮肤镜图像分类方法[J]. 计算机工程, 49, 239-246, 254(2023).

         LI J W, LÜ X Q, GU Y. Dermoscopy image classification method based on improved ConvNeXt[J]. Computer Engineering, 49, 239-246, 254(2023).

    [10] ZHUANG J X, CAI J B, ZHANG J G et al. Class attention to regions of lesion for imbalanced medical image recognition[J]. Neurocomputing, 555, 126577(2023).

    [11] ABDELHALIM I S A, MOHAMED M F, MAHDY Y B. Data augmentation for skin lesion using self-attention based progressive generative adversarial network[J]. Expert Systems with Applications, 165, 113922(2021).

    [12] ZHANG H, WU C R, ZHANG Z Y et al. ResNeSt: split-attention networks[C], 2735-2745(2022).

    [13] SUN L, DONG J X, TANG J H et al. Spatially-adaptive feature modulation for efficient image super-resolution[C], 13144-13153(2023).

    [14] CHEN J R, KAO S H, HE H et al. Run, Don't walk: chasing higher flops for faster neural networks[C], 12021-12031(2023).

    [15] MISRA D, NALAMADA T, ARASANIPALAI A U et al. Rotate to attend: convolutional triplet attention module[C], 3138-3147(2021).

    [17] ZHANG Y F, FENG W, WU Z Y et al. Deep-learning model of ResNet combined with CBAM for malignant-benign pulmonary nodules classification on computed tomography images[J]. Medicina, 59, 1088(2023).

    [20] LIU Q D, YU L Q, LUO L Y et al. Semi-supervised medical image classification with relation-driven self-ensembling model[J]. IEEE Transactions on Medical Imaging, 39, 3429-3440(2020).

    [21] DATTA S K, SHAIKH M A, SRIHARI S N et al. Soft attention improves skin cancer classification performance[C], 27, 13-23(2021).

    [22] CAI G, ZHU Y, WU Y et al. A multimodal transformer to fuse images and metadata for skin disease classification[J]. The Visual Computer, 39, 2781-2793(2023).

    [23] YANG G, LUO S H, GREER P. A novel vision transformer model for skin cancer classification[J]. Neural Processing Letters, 55, 9335-9351(2023).

    [24] ZHANG J P, XIE Y T, XIA Y et al. Attention residual learning for skin lesion classification[J]. IEEE Transactions on Medical Imaging, 38, 2092-2103(2019).

    [25] AL-MASNI M A, KIM D H, KIM T S. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification[J]. Computer Methods and Programs in Biomedicine, 190, 105351(2020).

    [26] KHOULOUD S, AHLEM M, FADEL T et al. W-net and inception residual network for skin lesion segmentation and classification[J]. Applied Intelligence, 52, 3976-3994(2022).

    [28] YAN Y Q, KAWAHARA J, HAMARNEH G. Melanoma recognition via visual attention[C], 793-804(2019).

    [116] GUO N, JIANG M Y, GAO L J et al. Simam: a simple, parameter-free attention module for convolutional neural networks[C], 11863-11874(2021).

    Tools

    Get Citation

    Copy Citation Text

    Di WANG, Xiaoqi LÜ, Jing LI. Dermoscopic image classification based on multi-scale and three-dimensional interaction feature optimization[J]. Optics and Precision Engineering, 2024, 32(24): 3644

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 3, 2024

    Accepted: --

    Published Online: Mar. 11, 2025

    The Author Email: Xiaoqi LÜ (lxiaoqi@imut.edu.cn)

    DOI:10.37188/OPE.20243224.3644

    Topics