Optics and Precision Engineering, Volume. 32, Issue 24, 3644(2024)

Dermoscopic image classification based on multi-scale and three-dimensional interaction feature optimization

Di WANG1... Xiaoqi LÜ1,2,* and Jing LI1 |Show fewer author(s)
Author Affiliations
  • 1School of Digital and Intelligence Industry, Inner Mongolia University of Science and Technology,Baotou0400, China
  • 2School of Information Engineering, Inner Mongolia University of Technology,Hohhot010051, China
  • show less
    Figures & Tables(14)
    Overall network architecture of our MTIFNet model
    Multi-scale spatial adaptation module
    Three-dimensional interaction feature optimization module
    Example of dataset categories
    Impact of transfer learning on experiments
    Confusion matrix before and after module improvements
    Visual comparison chart of the ablation experiment
    • Table 1. Detailed settings of MTIFNet

      View table
      View in Article

      Table 1. Detailed settings of MTIFNet

      StageOutput sizeMTIFNet
      Average pool,7-d fc,softmax
      Conv1H2×H2Conv 3×3 ×3
      MaxpoolH4×H4Conv 3×3
      MTIFNet Stage1H4×H4Conv 1×1TIFOMConv 3×3Conv 1×1×3
      MTIFNet Stage2H8×H8Conv 1×1TIFOMConv 3×3Conv 1×1×4
      MSAMH8×H8SAFRMDWCCM
      MTIFNet Stage3H16×H16Conv 1×1TIFOMConv 3×3Conv 1×1×23
      MTIFNet Stage4H32×H32Conv 1×1TIFOMConv 3×3Conv 1×1×3
    • Table 2. Comparison of effects of different models using MSAM

      View table
      View in Article

      Table 2. Comparison of effects of different models using MSAM

      MethodMSAMAccPreRecSpeFLOPs/GTime/s
      Densenet12185.57±0.4776.35±0.9372.15±0.5696.42±0.47239.550.560 7
      86.71±0.4176.93±0.5872.10±0.5797.02±0.43265.340.575 4
      Fcanet5090.71±0.3583.47±0.6386.79±0.9397.36±0.3443.030.568 7
      91.11±0.6186.86±0.6286.90±2.1197.73±0.78249.930.821 6
      ResNet10190.30±0.6584.08±0.9084.56±0.4097.44±0.4981.840.722 7
      90.65±0.6285.63±0.6184.64±0.9397.90±0.4694.790.577 1
      ConvNext92.07±0.4688.00±0.9688.04±0.4997.97±0.36160.670.583 4
      92.95±0.5090.39±0.7987.98±0.8897.99±1.01163.900.858 7
      ResNeSt10192.56±0.3589.02±0.9686.33±1.9298.00±0.44107.040.575 5
      93.85±0.5691.23±2.5390.70±2.6598.27±0.18119.980.609 0
    • Table 3. Ablation experiment of MSAM position

      View table
      View in Article

      Table 3. Ablation experiment of MSAM position

      MethodAccPreRecSpeFLOPs/GTime/s
      Stage192.66±0.3288.92±0.5185.69±1.5897.96±0.24120.040.578 7
      Stage293.85±0.5691.23±2.5390.70±2.6598.27±0.18119.980.609 0
      Stage392.45±0.4189.29±3.3085.77±1.3797.87±0..15119.960.671 9
      Stage492.70±0.3188.68±1.4986.05±1.1998.07±0.39119.940.810 2
    • Table 4. Validation of TIFOM

      View table
      View in Article

      Table 4. Validation of TIFOM

      MethodAccPreRecSpeFLOPs/GTime/s
      BaseTriplet AttentionSimAM Attention
      92.56±0.3589.02±0.9686.33±1.9298.00±0.44107.040.575 5
      93.00±0.5189.18±1.7087.03±0.9698.10±0.11107.300.807 9
      93.01±0.5589.35±1.1887.15±1.7597.97±0.39107.040.876 7
      93.51±0.5289.88±1.3389.57±2.6798.20±0.21107.300.811 9
    • Table 5. Ablation experiments of the whole network

      View table
      View in Article

      Table 5. Ablation experiments of the whole network

      MethodAccPreRecSpeFLOPs/GTime/s
      BaseSAFRMDWCCMTIFOM
      92.56±0.3589.02±0.9686.33±1.9298.00±0.44107.040.575 5
      92.94±0.3589.70±1.0989.70±3.2797.95±0..16109.210.526 5
      93.85±0.5691.23±2.5390.70±2.6598.27±0.18119.980.609 0
      93.51±0.5289.88±1.3389.57±2.6798.20±0.21107.300.811 9
      94.32±0.4591.61±1.2993.00±0.6098.39±0.17120.240.937 3
    • Table 6. Classification results of different models on the ISIC 2018 dataset

      View table
      View in Article

      Table 6. Classification results of different models on the ISIC 2018 dataset

      MethodAccPreRecSpe
      Le1993.0088.0086.00-
      Liu2093.1447.7081.8492.30
      Datta2193.4093.70--
      Cai2293.8188.6490.1498.36
      Yang2394.1082.4384.4397.86
      Ours94.3291.6193.0098.39
    • Table 7. Classification results of different models on the ISIC 2017 dataset

      View table
      View in Article

      Table 7. Classification results of different models on the ISIC 2017 dataset

      MethodAccPreRecSpe
      Zhang2486.80-87.8086.70
      Al-Masni2581.57-75.3380.62
      Datta2190.40-91.6083.30
      Kim2989.5091.3049.6099.20
      Khouloud2696.9795.7195.1597.87
      Ours98.5798.2098.4799.13
    Tools

    Get Citation

    Copy Citation Text

    Di WANG, Xiaoqi LÜ, Jing LI. Dermoscopic image classification based on multi-scale and three-dimensional interaction feature optimization[J]. Optics and Precision Engineering, 2024, 32(24): 3644

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 3, 2024

    Accepted: --

    Published Online: Mar. 11, 2025

    The Author Email: LÜ Xiaoqi (lxiaoqi@imut.edu.cn)

    DOI:10.37188/OPE.20243224.3644

    Topics