Opto-Electronic Advances, Volume. 8, Issue 1, 240114-1(2025)

Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform

Zhi Jiang1, Cizhe Fang1,3, Xu Ran1, Yu Gao1, Ruiqing Wang1, Jianguo Wang2, Danyang Yao1、*, Xuetao Gan2、**, Yan Liu1,3, Yue Hao1, and Genquan Han1,3
Author Affiliations
  • 1State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, School of Microelectronics, Xidian University, Xi’an 710071, China
  • 2Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
  • 3Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
  • show less
    References(62)

    [1] BEA Saleh, MC Teich. Fundamentals of Photonics(2019).

    [2] KJ Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [3] G Cocorullo, Corte FG Della, I Rendina et al. Thermo-optic effect exploitation in silicon microstructures. Sens Actuators A Phys, 71, 19-26(1998).

    [4] RA Soref, BR Bennett. Electrooptical effects in silicon. IEEE J Quantum Electron, 23, 123-129(1987).

    [5] A Shakoor, K Nozaki, E Kuramochi et al. Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy. Opt Express, 22, 28623-28634(2014).

    [6] Shiramin L Abdollahi, WQ Xie, B Snyder et al. High extinction ratio hybrid graphene-silicon photonic crystal switch. IEEE Photonics Technol Lett, 30, 157-160(2018).

    [7] Y Zhang, Y He, QM Zhu et al. Single-resonance silicon nanobeam filter with an ultra-high thermo-optic tuning efficiency over a wide continuous tuning range. Opt Lett, 43, 4518-4521(2018).

    [8] M Soljačić, JD Joannopoulos. Enhancement of nonlinear effects using photonic crystals. Nat Mater, 3, 211-219(2004).

    [9] MZ Chowdhury, M Shahjalal, S Ahmed et al. 6G wireless communication systems: applications, requirements, technologies, challenges, and research directions. IEEE Open J Commun Soc, 1, 957-975(2020).

    [10] D Zhu, LB Shao, MJ Yu et al. Integrated photonics on thin-film lithium niobate. Adv Opt Photonics, 13, 242-352(2021).

    [11] EL Wooten, KM Kissa, A Yi-Yan et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quantum Electron, 6, 69-82(2000).

    [13] H Suzuki, M Fujiwara, K Iwatsuki. Application of super-DWDM technologies to terrestrial terabit transmission systems. J Lightwave Technol, 24, 1998-2005(2006).

    [14] C Wang, M Zhang, X Chen et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [15] MX Li, HX Liang, R Luo et al. Photon-level tuning of photonic nanocavities. Optica, 6, 860-863(2019).

    [16] LT Cai, A Mahmoud, M Khan et al. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photonics Res, 7, 1003-1013(2019).

    [17] S Benchabane, L Robert, JY Rauch et al. Highly selective electroplated nickel mask for lithium niobate dry etching. J Appl Phys, 105, 094109(2009).

    [18] R Geiss, S Diziain, M Steinert et al. Photonic crystals in lithium niobate by combining focussed ion beam writing and ion-beam enhanced etching. Phys Status Solidi A, 211, 2421-2425(2014).

    [19] RB Wu, JH Zhang, N Yao et al. Lithium niobate micro-disk resonators of quality factors above 107. Opt Lett, 43, 4116-4119(2018).

    [20] RH Gao, HS Zhang, F Bo et al. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 108. New J Phys, 23, 123027(2021).

    [21] RH Gao, N Yao, JL Guan et al. Lithium niobate microring with ultra-high Q factor above 108. Chin Opt Lett, 20, 011902(2022).

    [22] ZJ Yu, X Xi, JW Ma et al. Photonic integrated circuits with bound states in the continuum. Optica, 6, 1342-1348(2019).

    [23] CL Zou, JM Cui, FW Sun et al. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photonics Rev, 9, 114-119(2015).

    [24] ZJ Yu, YY Tong, HK Tsang et al. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat Commun, 11, 2602(2020).

    [25] F Ye, Y Yu, X Xi et al. Second-harmonic generation in etchless lithium niobate nanophotonic waveguides with bound states in the continuum. Laser Photonics Rev, 16, 2100429(2022).

    [26] JX Zhang, BC Pan, WX Liu et al. Ultra-compact electro-optic modulator based on etchless lithium niobate photonic crystal nanobeam cavity. Opt Express, 30, 20839-20846(2022).

    [27] ZJ Yu, XK Sun. Acousto-optic modulation of photonic bound state in the continuum. Light Sci Appl, 9, 1(2020).

    [28] Y Yu, ZJ Yu, ZY Zhang et al. Wavelength-division multiplexing on an etchless lithium niobate integrated platform. ACS Photonics, 9, 3253-3259(2022).

    [29] JH Zhang, JY Ma, M Parry et al. Spatially entangled photon pairs from lithium niobate nonlocal metasurfaces. Sci Adv, 8, eabq4240(2022).

    [30] Molina L Valencia, Morales R Camacho, JH Zhang et al. Enhanced infrared vision by nonlinear up-conversion in nonlocal metasurfaces. Adv Mater, 36, 2402777(2024).

    [31] J Čtyroký, J Petráček, V Kuzmiak et al. Bound modes in the continuum in integrated photonic LiNbO3 waveguides: are they always beneficial. Opt Express, 31, 44-55(2023).

    [33] QM Quan, M Loncar. Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities. Opt Express, 19, 18529-18542(2011).

    [34] QM Quan, PB Deotare, M Loncar. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide. Appl Phys Lett, 96, 203102(2010).

    [35] JD Joannopoulos, SG Johnson, JN Winn et al. Photonic Crystals: Molding the Flow of Light(2008).

    [36] MX Li, JW Ling, Y He et al. Lithium niobate photonic-crystal electro-optic modulator. Nat Commun, 11, 4123(2020).

    [38] HX Liang, R Luo, Y He et al. High-quality lithium niobate photonic crystal nanocavities. Optica, 4, 1251-1258(2017).

    [39] JD Witmer, JA Valery, P Arrangoiz-Arriola et al. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate. Sci Rep, 7, 46313(2017).

    [40] J Wang, H Shen, L Fan et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat Commun, 6, 5957(2015).

    [41] B Stern, XL Zhu, CP Chen et al. On-chip mode-division multiplexing switch. Optica, 2, 530-535(2015).

    [42] HY Zhou, CY Qiu, XH Jiang et al. Compact, submilliwatt, 2 × 2 silicon thermo-optic switch based on photonic crystal nanobeam cavities. Photonics Res, 5, 108-112(2017).

    [43] HY Yu, F Qiu. Compact thermo-optic modulator based on a titanium dioxide micro-ring resonator. Opt Lett, 47, 2093-2096(2022).

    [44] L Moretti, M Iodice, Corte FG Della et al. Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions. J Appl Phys, 98, 036101(2005).

    [45] YY Chen, J Whitehead, A Ryou et al. Large thermal tuning of a polymer-embedded silicon nitride nanobeam cavity. Opt Lett, 44, 3058-3061(2019).

    [46] QM Quan, IB Burgess, SKY Tang et al. High-Q, low index-contrast polymeric photonic crystal nanobeam cavities. Opt Express, 19, 22191-22197(2011).

    [47] DY Yao, Z Jiang, Y Zhang et al. Ultrahigh thermal-efficient all-optical silicon photonic crystal nanobeam cavity modulator with TPA-induced thermo-optic effect. Opt Lett, 48, 2325-2328(2023).

    [48] XY Liu, P Ying, XM Zhong et al. Highly efficient thermo-optic tunable micro-ring resonator based on an LNOI platform. Opt Lett, 45, 6318-6321(2020).

    [49] GL Li, XZ Zheng, J Yao et al. 25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning. Opt Express, 19, 20435-20443(2011).

    [50] Y Gao, W Zhou, XK Sun et al. Cavity-enhanced thermo-optic bistability and hysteresis in a graphene-on-Si3N4 ring resonator. Opt Lett, 42, 1950-1953(2017).

    [51] VR Almeida, M Lipson. Optical bistability on a silicon chip. Opt Lett, 29, 2387-2389(2004).

    [52] PY Wen, M Sanchez, M Gross et al. Vertical-cavity optical AND gate. Opt Commun, 219, 383-387(2003).

    [53] C Thierfelder, S Sanna, A Schindlmayr et al. Do we know the band gap of lithium niobate. Phys Status Solidi C, 7, 362-365(2010).

    [54] PE Barclay, K Srinivasan, O Painter. Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper. Opt Express, 13, 801-820(2005).

    [55] K Nozaki, A Shinya, S Matsuo et al. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities. Opt Express, 21, 11877-11888(2013).

    [56] JY Su, XQ Huang, HL Xu et al. Ultrafast all-optical switching in a silicon-polymer compound slotted photonic crystal nanobeam cavity. Opt Rev, 30, 33-40(2023).

    [57] S Zheng, ZS Ruan, SQ Gao et al. Compact tunable electromagnetically induced transparency and Fano resonance on silicon platform. Opt Express, 25, 25655-25662(2017).

    [58] XQ Guo, TG Dai, B Chen et al. Twin-Fano resonator with widely tunable slope for ultra-high-resolution wavelength monitor. Opt Lett, 44, 4527-4530(2019).

    [59] KK Mehta, JS Orcutt, RJ Ram. Fano line shapes in transmission spectra of silicon photonic crystal resonators. Appl Phys Lett, 102, 081109(2013).

    [60] LP Gu, BB Wang, QC Yuan et al. Fano resonance from a one-dimensional topological photonic crystal. APL Photonics, 6, 086105(2021).

    [61] M Galli, SL Portalupi, M Belotti et al. Light scattering and Fano resonances in high-Q photonic crystal nanocavities. Appl Phys Lett, 94, 071101(2009).

    [62] MF Limonov, MV Rybin, AN Poddubny et al. Fano resonances in photonics. Nat Photonics, 11, 543-554(2017).

    Tools

    Get Citation

    Copy Citation Text

    Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han. Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform[J]. Opto-Electronic Advances, 2025, 8(1): 240114-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 16, 2024

    Accepted: Aug. 19, 2024

    Published Online: Mar. 24, 2025

    The Author Email: Yao Danyang (DYYao), Gan Xuetao (XTGan)

    DOI:10.29026/oea.2025.240114

    Topics