Opto-Electronic Advances, Volume. 8, Issue 1, 240114-1(2025)
Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
[1] BEA Saleh, MC Teich. Fundamentals of Photonics(2019).
[2] KJ Vahala. Optical microcavities. Nature, 424, 839-846(2003).
[3] G Cocorullo, Corte FG Della, I Rendina et al. Thermo-optic effect exploitation in silicon microstructures. Sens Actuators A Phys, 71, 19-26(1998).
[4] RA Soref, BR Bennett. Electrooptical effects in silicon. IEEE J Quantum Electron, 23, 123-129(1987).
[5] A Shakoor, K Nozaki, E Kuramochi et al. Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy. Opt Express, 22, 28623-28634(2014).
[6] Shiramin L Abdollahi, WQ Xie, B Snyder et al. High extinction ratio hybrid graphene-silicon photonic crystal switch. IEEE Photonics Technol Lett, 30, 157-160(2018).
[7] Y Zhang, Y He, QM Zhu et al. Single-resonance silicon nanobeam filter with an ultra-high thermo-optic tuning efficiency over a wide continuous tuning range. Opt Lett, 43, 4518-4521(2018).
[8] M Soljačić, JD Joannopoulos. Enhancement of nonlinear effects using photonic crystals. Nat Mater, 3, 211-219(2004).
[9] MZ Chowdhury, M Shahjalal, S Ahmed et al. 6G wireless communication systems: applications, requirements, technologies, challenges, and research directions. IEEE Open J Commun Soc, 1, 957-975(2020).
[10] D Zhu, LB Shao, MJ Yu et al. Integrated photonics on thin-film lithium niobate. Adv Opt Photonics, 13, 242-352(2021).
[11] EL Wooten, KM Kissa, A Yi-Yan et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quantum Electron, 6, 69-82(2000).
[13] H Suzuki, M Fujiwara, K Iwatsuki. Application of super-DWDM technologies to terrestrial terabit transmission systems. J Lightwave Technol, 24, 1998-2005(2006).
[14] C Wang, M Zhang, X Chen et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).
[15] MX Li, HX Liang, R Luo et al. Photon-level tuning of photonic nanocavities. Optica, 6, 860-863(2019).
[16] LT Cai, A Mahmoud, M Khan et al. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photonics Res, 7, 1003-1013(2019).
[17] S Benchabane, L Robert, JY Rauch et al. Highly selective electroplated nickel mask for lithium niobate dry etching. J Appl Phys, 105, 094109(2009).
[18] R Geiss, S Diziain, M Steinert et al. Photonic crystals in lithium niobate by combining focussed ion beam writing and ion-beam enhanced etching. Phys Status Solidi A, 211, 2421-2425(2014).
[19] RB Wu, JH Zhang, N Yao et al. Lithium niobate micro-disk resonators of quality factors above 107. Opt Lett, 43, 4116-4119(2018).
[20] RH Gao, HS Zhang, F Bo et al. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 108. New J Phys, 23, 123027(2021).
[21] RH Gao, N Yao, JL Guan et al. Lithium niobate microring with ultra-high Q factor above 108. Chin Opt Lett, 20, 011902(2022).
[22] ZJ Yu, X Xi, JW Ma et al. Photonic integrated circuits with bound states in the continuum. Optica, 6, 1342-1348(2019).
[23] CL Zou, JM Cui, FW Sun et al. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photonics Rev, 9, 114-119(2015).
[24] ZJ Yu, YY Tong, HK Tsang et al. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat Commun, 11, 2602(2020).
[25] F Ye, Y Yu, X Xi et al. Second-harmonic generation in etchless lithium niobate nanophotonic waveguides with bound states in the continuum. Laser Photonics Rev, 16, 2100429(2022).
[26] JX Zhang, BC Pan, WX Liu et al. Ultra-compact electro-optic modulator based on etchless lithium niobate photonic crystal nanobeam cavity. Opt Express, 30, 20839-20846(2022).
[27] ZJ Yu, XK Sun. Acousto-optic modulation of photonic bound state in the continuum. Light Sci Appl, 9, 1(2020).
[28] Y Yu, ZJ Yu, ZY Zhang et al. Wavelength-division multiplexing on an etchless lithium niobate integrated platform. ACS Photonics, 9, 3253-3259(2022).
[29] JH Zhang, JY Ma, M Parry et al. Spatially entangled photon pairs from lithium niobate nonlocal metasurfaces. Sci Adv, 8, eabq4240(2022).
[30] Molina L Valencia, Morales R Camacho, JH Zhang et al. Enhanced infrared vision by nonlinear up-conversion in nonlocal metasurfaces. Adv Mater, 36, 2402777(2024).
[31] J Čtyroký, J Petráček, V Kuzmiak et al. Bound modes in the continuum in integrated photonic LiNbO3 waveguides: are they always beneficial. Opt Express, 31, 44-55(2023).
[33] QM Quan, M Loncar. Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities. Opt Express, 19, 18529-18542(2011).
[34] QM Quan, PB Deotare, M Loncar. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide. Appl Phys Lett, 96, 203102(2010).
[35] JD Joannopoulos, SG Johnson, JN Winn et al. Photonic Crystals: Molding the Flow of Light(2008).
[36] MX Li, JW Ling, Y He et al. Lithium niobate photonic-crystal electro-optic modulator. Nat Commun, 11, 4123(2020).
[38] HX Liang, R Luo, Y He et al. High-quality lithium niobate photonic crystal nanocavities. Optica, 4, 1251-1258(2017).
[39] JD Witmer, JA Valery, P Arrangoiz-Arriola et al. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate. Sci Rep, 7, 46313(2017).
[40] J Wang, H Shen, L Fan et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat Commun, 6, 5957(2015).
[41] B Stern, XL Zhu, CP Chen et al. On-chip mode-division multiplexing switch. Optica, 2, 530-535(2015).
[42] HY Zhou, CY Qiu, XH Jiang et al. Compact, submilliwatt, 2 × 2 silicon thermo-optic switch based on photonic crystal nanobeam cavities. Photonics Res, 5, 108-112(2017).
[43] HY Yu, F Qiu. Compact thermo-optic modulator based on a titanium dioxide micro-ring resonator. Opt Lett, 47, 2093-2096(2022).
[44] L Moretti, M Iodice, Corte FG Della et al. Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions. J Appl Phys, 98, 036101(2005).
[45] YY Chen, J Whitehead, A Ryou et al. Large thermal tuning of a polymer-embedded silicon nitride nanobeam cavity. Opt Lett, 44, 3058-3061(2019).
[46] QM Quan, IB Burgess, SKY Tang et al. High-Q, low index-contrast polymeric photonic crystal nanobeam cavities. Opt Express, 19, 22191-22197(2011).
[47] DY Yao, Z Jiang, Y Zhang et al. Ultrahigh thermal-efficient all-optical silicon photonic crystal nanobeam cavity modulator with TPA-induced thermo-optic effect. Opt Lett, 48, 2325-2328(2023).
[48] XY Liu, P Ying, XM Zhong et al. Highly efficient thermo-optic tunable micro-ring resonator based on an LNOI platform. Opt Lett, 45, 6318-6321(2020).
[49] GL Li, XZ Zheng, J Yao et al. 25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning. Opt Express, 19, 20435-20443(2011).
[50] Y Gao, W Zhou, XK Sun et al. Cavity-enhanced thermo-optic bistability and hysteresis in a graphene-on-Si3N4 ring resonator. Opt Lett, 42, 1950-1953(2017).
[51] VR Almeida, M Lipson. Optical bistability on a silicon chip. Opt Lett, 29, 2387-2389(2004).
[52] PY Wen, M Sanchez, M Gross et al. Vertical-cavity optical AND gate. Opt Commun, 219, 383-387(2003).
[53] C Thierfelder, S Sanna, A Schindlmayr et al. Do we know the band gap of lithium niobate. Phys Status Solidi C, 7, 362-365(2010).
[54] PE Barclay, K Srinivasan, O Painter. Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper. Opt Express, 13, 801-820(2005).
[55] K Nozaki, A Shinya, S Matsuo et al. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities. Opt Express, 21, 11877-11888(2013).
[56] JY Su, XQ Huang, HL Xu et al. Ultrafast all-optical switching in a silicon-polymer compound slotted photonic crystal nanobeam cavity. Opt Rev, 30, 33-40(2023).
[57] S Zheng, ZS Ruan, SQ Gao et al. Compact tunable electromagnetically induced transparency and Fano resonance on silicon platform. Opt Express, 25, 25655-25662(2017).
[58] XQ Guo, TG Dai, B Chen et al. Twin-Fano resonator with widely tunable slope for ultra-high-resolution wavelength monitor. Opt Lett, 44, 4527-4530(2019).
[59] KK Mehta, JS Orcutt, RJ Ram. Fano line shapes in transmission spectra of silicon photonic crystal resonators. Appl Phys Lett, 102, 081109(2013).
[60] LP Gu, BB Wang, QC Yuan et al. Fano resonance from a one-dimensional topological photonic crystal. APL Photonics, 6, 086105(2021).
[61] M Galli, SL Portalupi, M Belotti et al. Light scattering and Fano resonances in high-Q photonic crystal nanocavities. Appl Phys Lett, 94, 071101(2009).
[62] MF Limonov, MV Rybin, AN Poddubny et al. Fano resonances in photonics. Nat Photonics, 11, 543-554(2017).
Get Citation
Copy Citation Text
Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han. Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform[J]. Opto-Electronic Advances, 2025, 8(1): 240114-1
Category: Research Articles
Received: May. 16, 2024
Accepted: Aug. 19, 2024
Published Online: Mar. 24, 2025
The Author Email: Yao Danyang (DYYao), Gan Xuetao (XTGan)